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5. Process Improvement

5.1. Introduction

This section
describes
the basic
concepts of
the Design
of
Experiments
(DOE or
DEX)

This section introduces the basic concepts, terminology, goals and
procedures underlying the proper statistical design of experiments.
Design of experiments is abbreviated as DOE throughout this chapter
(an alternate abbreviation, DEX, is used in DATAPLOT).

Topics covered are:

What is experimental design or DOE?●   

What are the goals or uses of DOE?●   

What are the steps in DOE?●   

5.1. Introduction
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5. Process Improvement
5.1. Introduction

5.1.1.What is experimental design?

Experimental
Design (or
DOE)
economically
maximizes
information

In an experiment, we deliberately change one or more process variables (or
factors) in order to observe the effect the changes have on one or more response
variables. The (statistical) design of experiments (DOE) is an efficient procedure
for planning experiments so that the data obtained can be analyzed to yield valid
and objective conclusions. 

DOE begins with determining the objectives of an experiment and selecting the
process factors for the study. An Experimental Design is the laying out of a
detailed experimental plan in advance of doing the experiment. Well chosen
experimental designs maximize the amount of "information" that can be obtained
for a given amount of experimental effort. 

The statistical theory underlying DOE generally begins with the concept of
process models.

Process Models for DOE

Black box
process
model

It is common to begin with a process model of the `black box' type, with several
discrete or continuous input factors that can be controlled--that is, varied at will
by the experimenter--and one or more measured output responses. The output
responses are assumed continuous. Experimental data are used to derive an
empirical (approximation) model linking the outputs and inputs. These empirical
models generally contain first and second-order terms.

Often the experiment has to account for a number of uncontrolled factors that
may be discrete, such as different machines or operators, and/or continuous such
as ambient temperature or humidity. Figure 1.1 illustrates this situation.

5.1.1. What is experimental design?
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Schematic
for a typical
process with
controlled
inputs,
outputs,
discrete
uncontrolled
factors and
continuous
uncontrolled
factors

FIGURE 1.1  A `Black Box' Process Model Schematic

Models for
DOE's

The most common empirical models fit to the experimental data take either a
linear form or quadratic form.

Linear model A linear model with two factors, X1 and X2, can be written as

Here, Y is the response for given levels of the main effects X1 and X2 and the
X1X2 term is included to account for a possible interaction effect between X1 and
X2. The constant 0 is the response of Y when both main effects are 0.

For a more complicated example, a linear model with three factors X1, X2, X3
and one response, Y, would look like (if all possible terms were included in the
model)

5.1.1. What is experimental design?
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The three terms with single "X's" are the main effects terms. There are k(k-1)/2 =
3*2/2 = 3 two-way interaction terms and 1 three-way interaction term (which is
often omitted, for simplicity). When the experimental data are analyzed, all the
unknown " " parameters are estimated and the coefficients of the "X" terms are
tested to see which ones are significantly different from 0.

Quadratic
model

A second-order (quadratic) model (typically used in response surface DOE's
with suspected curvature) does not include the three-way interaction term but
adds three more terms to the linear model, namely

.

Note: Clearly, a full model could include many cross-product (or interaction)
terms involving squared X's. However, in general these terms are not needed and
most DOE software defaults to leaving them out of the model.
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5. Process Improvement
5.1. Introduction

5.1.2.What are the uses of DOE?

DOE is a
multipurpose
tool that can
help in many
situations

Below are seven examples illustrating situations in which experimental design can be used
effectively:

Choosing Between Alternatives●   

Selecting the Key Factors Affecting a Response●   

Response Surface Modeling to:

Hit a Target❍   

Reduce Variability❍   

Maximize or Minimize a Response❍   

Make a Process Robust (i.e., the process gets the "right" results even though there
are uncontrollable "noise" factors)

❍   

Seek Multiple Goals❍   

●   

Regression Modeling●   

Choosing Between Alternatives (Comparative Experiment)

A common
use is
planning an
experiment
to gather
data to make
a decision
between two
or more
alternatives

Supplier A vs. supplier B? Which new additive is the most effective? Is catalyst `x' an
improvement over the existing catalyst? These and countless other choices between alternatives
can be presented to us in a never-ending parade. Often we have the choice made for us by outside
factors over which we have no control. But in many cases we are also asked to make the choice.
It helps if one has valid data to back up one's decision.

The preferred solution is to agree on a measurement by which competing choices can be
compared, generate a sample of data from each alternative, and compare average results. The
'best' average outcome will be our preference. We have performed a comparative experiment!

Types of
comparitive
studies

Sometimes this comparison is performed under one common set of conditions. This is a
comparative study with a narrow scope - which is suitable for some initial comparisons of
possible alternatives. Other comparison studies, intended to validate that one alternative is
perferred over a wide range of conditions, will purposely and systematically vary the background
conditions under which the primary comparison is made in order to reach a conclusion that will
be proven valid over a broad scope. We discuss experimental designs for each of these types of
comparisons in Sections 5.3.3.1 and 5.3.3.2.

Selecting the Key Factors Affecting a Response (Screening Experiments)

5.1.2. What are the uses of DOE?
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Selecting the
few that
matter from
the many
possible
factors

Often there are many possible factors, some of which may be critical and others which may have
little or no effect on a response. It may be desirable, as a goal by itself, to reduce the number of
factors to a relatively small set (2-5) so that attention can be focussed on controlling those factors
with appropriate specifications, control charts, etc.

Screening experiments are an efficient way, with a minimal number of runs, of determining the
important factors. They may also be used as a first step when the ultimate goal is to model a
response with a response surface. We will discuss experimental designs for screening a large
number of factors in Sections 5.3.3.3, 5.3.3.4 and 5.3.3.5.

Response Surface Modeling a Process

Some
reasons to
model a
process

Once one knows the primary variables (factors) that affect the responses of interest, a number of
additional objectives may be pursued. These include:

Hitting a Target●   

Maximizing or Minimizing a Response●   

Reducing Variation●   

Making a Process Robust●   

Seeking Multiple Goals●   

What each of these purposes have in common is that experimentation is used to fit a model that
may permit a rough, local approximation to the actual surface. Given that the particular objective
can be met with such an approximate model, the experimental effort is kept to a minimum while
still achieving the immediate goal.

These response surface modeling objectives will now be briefly expanded upon.

Hitting a Target

Often we
want to "fine
tune" a
process to
consistently
hit a target

This is a frequently encountered goal for an experiment.

One might try out different settings until the desired target is `hit' consistently. For example, a
machine tool that has been recently overhauled may require some setup `tweaking' before it runs
on target. Such action is a small and common form of experimentation. However, rather than
experimenting in an ad hoc manner until we happen to find a setup that hits the target, one can fit
a model estimated from a small experiment and use this model to determine the necessary
adjustments to hit the target.

More complex forms of experimentation, such as the determination of the correct chemical mix
of a coating that will yield a desired refractive index for the dried coat (and simultaneously
achieve specifications for other attributes), may involve many ingredients and be very sensitive to
small changes in the percentages in the mix. Fitting suitable models, based on sequentially
planned experiments, may be the only way to efficiently achieve this goal of hitting targets for
multiple responses simultaneously.

Maximizing or Minimizing a Response

5.1.2. What are the uses of DOE?
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Optimizing a
process
output is a
common
goal

Many processes are being run at sub-optimal settings, some of them for years, even though each
factor has been optimized individually over time. Finding settings that increase yield or decrease
the amount of scrap and rework represent opportunities for substantial financial gain. Often,
however, one must experiment with multiple inputs to achieve a better output. Section 5.3.3.6 on
second-order designs plus material in Section 5.5.3 will be useful for these applications.

FIGURE 1.1  Pathway up the process response surface to an `optimum'

Reducing Variation

Processes
that are on
target, on
the average,
may still
have too
much
variability

A process may be performing with unacceptable consistency, meaning its internal variation is too
high.

Excessive variation can result from many causes. Sometimes it is due to the lack of having or
following standard operating procedures. At other times, excessive variation is due to certain
hard-to-control inputs that affect the critical output characteristics of the process. When this latter
situation is the case, one may experiment with these hard-to-control factors, looking for a region
where the surface is flatter and the process is easier to manage. To take advantage of such flatness
in the surface, one must use designs - such as the second-order designs of Section 5.3.3.6 - that
permit identification of these features. Contour or surface plots are useful for elucidating the key
features of these fitted models. See also 5.5.3.1.4.

Graph of
data before
variation
reduced
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It might be possible to reduce the variation by altering the setpoints (recipe) of the process, so that
it runs in a more `stable' region.

Graph of
data after
process
variation
reduced
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Finding this new recipe could be the subject of an experiment, especially if there are many input
factors that could conceivably affect the output.

Making a Process Robust

The less a
process or
product is
affected by
external
conditions,
the better it
is - this is
called
"Robustness"

An item designed and made under controlled conditions will be later `field tested' in the hands of
the customer and may prove susceptible to failure modes not seen in the lab or thought of by
design. An example would be the starter motor of an automobile that is required to operate under
extremes of external temperature. A starter that performs under such a wide range is termed
`robust' to temperature.

Designing an item so that it is robust calls for a special experimental effort. It is possible to stress
the item in the design lab and so determine the critical components affecting its performance. A
different gauge of armature wire might be a solution to the starter motor, but so might be many
other alternatives. The correct combination of factors can be found only by experimentation.

Seeking Multiple Goals

5.1.2. What are the uses of DOE?
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Sometimes
we have
multiple
outputs and
we have to
compromise
to achieve
desirable
outcomes -
DOE can
help here

A product or process seldom has just one desirable output characteristic. There are usually
several, and they are often interrelated so that improving one will cause a deterioration of another.
For example: rate vs. consistency; strength vs. expense; etc.

Any product is a trade-off between these various desirable final characteristics. Understanding the
boundaries of the trade-off allows one to make the correct choices. This is done by either
constructing some weighted objective function (`desirability function') and optimizing it, or
examining contour plots of responses generated by a computer program, as given below.

Sample
contour plot
of deposition
rate and
capability

FIGURE 1.4  Overlaid contour plot of Deposition Rate and Capability (Cp)

Regression Modeling

Regression
models
(Chapter 4)
are used to
fit more
precise
models

Sometimes we require more than a rough approximating model over a local region. In such cases,
the standard designs presented in this chapter for estimating first- or second-order polynomial
models may not suffice. Chapter 4 covers the topic of experimental design and analysis for fitting
general models for a single explanatory factor. If one has multiple factors, and either a nonlinear
model or some other special model, the computer-aided designs of Section 5.5.2 may be useful.

5.1.2. What are the uses of DOE?
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5. Process Improvement
5.1. Introduction

5.1.3.What are the steps of DOE?

Key steps for
DOE

Obtaining good results from a DOE involves these seven steps:

Set objectives1.  

Select process variables2.  

Select an experimental design3.  

Execute the design4.  

Check that the data are consistent with the experimental
assumptions 

5.  

Analyze and interpret the results6.  

Use/present the results (may lead to further runs or DOE's).7.  

A checklist of
practical
considerations

Important practical considerations in planning and running
experiments are

Check performance of gauges/measurement devices first.●   

Keep the experiment as simple as possible.●   

Check that all planned runs are feasible.●   

Watch out for process drifts and shifts during the run.●   

Avoid unplanned changes (e.g., swap operators at halfway
point).

●   

Allow some time (and back-up material) for unexpected events.●   

Obtain buy-in from all parties involved.●   

Maintain effective ownership of each step in the experimental
plan.

●   

Preserve all the raw data--do not keep only summary averages!●   

Record everything that happens.●   

Reset equipment to its original state after the experiment.●   

The Sequential or Iterative Approach to DOE

5.1.3. What are the steps of DOE?
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Planning to
do a sequence
of small
experiments is
often better
than relying
on one big
experiment to
give you all
the answers

It is often a mistake to believe that `one big experiment will give the
answer.'

A more useful approach to experimental design is to recognize that
while one experiment might provide a useful result, it is more
common to perform two or three, or maybe more, experiments before
a complete answer is attained. In other words, an iterative approach is
best and, in the end, most economical. Putting all one's eggs in one
basket is not advisable.

Each stage
provides
insight for
next stage

The reason an iterative approach frequently works best is because it is
logical to move through stages of experimentation, each stage
providing insight as to how the next experiment should be run.

5.1.3. What are the steps of DOE?

http://www.itl.nist.gov/div898/handbook/pri/section1/pri13.htm (2 of 2) [7/1/2003 4:15:34 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


5. Process Improvement

5.2.Assumptions

We should
check the
engineering
and
model-building
assumptions
that are made
in most DOE's

In all model building we make assumptions, and we also require
certain conditions to be approximately met for purposes of estimation.
This section looks at some of the engineering and mathematical
assumptions we typically make. These are:

Are the measurement systems capable for all of your
responses?

●   

Is your process stable?●   

Are your responses likely to be approximated well by simple
polynomial models?

●   

Are the residuals (the difference between the model predictions
and the actual observations) well behaved?

●   

5.2. Assumptions
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5. Process Improvement
5.2. Assumptions

5.2.1. Is the measurement system capable?

Metrology
capabilities
are a key
factor in most
experiments

It is unhelpful to find, after you have finished all the experimental
runs, that the measurement devices you have at your disposal cannot
measure the changes you were hoping to see. Plan to check this out
before embarking on the experiment itself. Measurement process
characterization is covered in Chapter 2.

SPC check of
measurement
devices

In addition, it is advisable, especially if the experimental material is
planned to arrive for measurement over a protracted period, that an
SPC (i.e., quality control) check is kept on all measurement devices
from the start to the conclusion of the whole experimental project.
Strange experimental outcomes can often be traced to `hiccups' in the
metrology system.

5.2.1. Is the measurement system capable?
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5. Process Improvement
5.2. Assumptions

5.2.2. Is the process stable?

Plan to
examine
process
stability as
part of your
experiment

Experimental runs should have control runs that are made at the
`standard' process setpoints, or at least at some standard operating
recipe. The experiment should start and end with such runs. A plot of
the outcomes of these control runs will indicate if the underlying process
itself has drifted or shifted during the experiment.

It is desirable to experiment on a stable process. However, if this cannot
be achieved, then the process instability must be accounted for in the
analysis of the experiment. For example, if the mean is shifting with
time (or experimental trial run), then it will be necessary to include a
trend term in the experimental model (i.e., include a time variable or a
run number variable).

5.2.2. Is the process stable?
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5. Process Improvement
5.2. Assumptions

5.2.3. Is there a simple model?

Polynomial
approximation
models only
work for
smoothly
varying
outputs

In this chapter we restrict ourselves to the case for which the response
variable(s) are continuous outputs denoted as Y. Over the experimental
range, the outputs must not only be continuous, but also reasonably
smooth. A sharp falloff in Y values is likely to be missed by the
approximating polynomials that we use because these polynomials
assume a smoothly curving underlying response surface.

Piecewise
smoothness
requires
separate
experiments

If the surface under investigation is known to be only piecewise
smooth, then the experiments will have to be broken up into separate
experiments, each investigating the shape of the separate sections. A
surface that is known to be very jagged (i.e., non-smooth) will not be
successfully approximated by a smooth polynomial.

Examples of
piecewise
smooth and
jagged
responses

     Piecewise Smooth                                       Jagged
FIGURE 2.1  Examples of Piecewise

Smooth and Jagged Responses

5.2.3. Is there a simple model?
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5. Process Improvement
5.2. Assumptions

5.2.4.Are the model residuals well-behaved?

Residuals are
the
differences
between the
observed and
predicted
responses

Residuals are estimates of experimental error obtained by subtracting the observed responses
from the predicted responses.

The predicted response is calculated from the chosen model, after all the unknown model
parameters have been estimated from the experimental data.

Examining residuals is a key part of all statistical modeling, including DOE's. Carefully looking
at residuals can tell us whether our assumptions are reasonable and our choice of model is
appropriate.

Residuals are
elements of
variation
unexplained
by fitted
model

Residuals can be thought of as elements of variation unexplained by the fitted model. Since this is
a form of error, the same general assumptions apply to the group of residuals that we typically use
for errors in general: one expects them to be (roughly) normal and (approximately) independently
distributed with a mean of 0 and some constant variance.

Assumptions
for residuals

These are the assumptions behind ANOVA and classical regression analysis. This means that an
analyst should expect a regression model to err in predicting a response in a random fashion; the
model should predict values higher than actual and lower than actual with equal probability. In
addition, the level of the error should be independent of when the observation occurred in the
study, or the size of the observation being predicted, or even the factor settings involved in
making the prediction. The overall pattern of the residuals should be similar to the bell-shaped
pattern observed when plotting a histogram of normally distributed data.

We emphasize the use of graphical methods to examine residuals.

Departures
indicate
inadequate
model

Departures from these assumptions usually mean that the residuals contain structure that is not
accounted for in the model. Identifying that structure and adding term(s) representing it to the
original model leads to a better model.

Tests for Residual Normality

Plots for
examining
residuals

Any graph suitable for displaying the distribution of a set of data is suitable for judging the
normality of the distribution of a group of residuals.  The three most common types are:

histograms,1.  

normal probability plots, and2.  

dot plots.3.  

5.2.4. Are the model residuals well-behaved?
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Histogram

The histogram is a frequency plot obtained by placing the data in regularly spaced cells and
plotting each cell frequency versus the center of the cell. Figure 2.2 illustrates an approximately
normal distribution of residuals produced by a model for a calibration process. We have
superimposed a normal density function on the histogram.

Small sample
sizes

Sample sizes of residuals are generally small (<50) because experiments have limited treatment
combinations, so a histogram is not be the best choice for judging the distribution of residuals. A
more sensitive graph is the normal probability plot.

Normal
probability
plot

The steps in forming a normal probability plot are:

Sort the residuals into ascending order.●   

Calculate the cumulative probability of each residual using the formula:

P(i-th residual) = i/(N+1)

with P denoting the cumulative probability of a point, i is the order of the value in the list
and N is the number of entries in the list.

●   

Plot the calculated p-values versus the residual value on normal probability paper.●   

The normal probability plot should produce an approximately straight line if the points come
from a normal distribution.

5.2.4. Are the model residuals well-behaved?
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Sample
normal
probability
plot with
overlaid dot
plot

Figure 2.3 below illustrates the normal probability graph created from the same group of residuals
used for Figure 2.2.

This graph includes the addition of a dot plot. The dot plot is the collection of points along the left
y-axis. These are the values of the residuals. The purpose of the dot plot is to provide an
indication the distribution of the residuals.

"S" shaped
curves
indicate
bimodal
distribution

Small departures from the straight line in the normal probability plot are common, but a clearly
"S" shaped curve on this graph suggests a bimodal distribution of residuals. Breaks near the
middle of this graph are also indications of abnormalities in the residual distribution.

NOTE: Studentized residuals are residuals converted to a scale approximately representing the
standard deviation of an individual residual from the center of the residual distribution. The
technique used to convert residuals to this form produces a Student's t distribution of values.

Independence of Residuals Over Time

Run sequence
plot

If the order of the observations in a data table represents the order of execution of each treatment
combination, then a plot of the residuals of those observations versus the case order or time order
of the observations will test for any time dependency. These are referred to as run sequence plots.

5.2.4. Are the model residuals well-behaved?
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Sample run
sequence plot
that exhibits
a time trend

Sample run
sequence plot
that does not
exhibit a time
trend

5.2.4. Are the model residuals well-behaved?
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Interpretation
of the sample
run sequence
plots

The residuals in Figure 2.4 suggest a time trend, while those in Figure 2.5 do not. Figure 2.4
suggests that the system was drifting slowly to lower values as the investigation continued. In
extreme cases a drift of the equipment will produce models with very poor ability to account for
the variability in the data (low R2).

If the investigation includes centerpoints, then plotting them in time order may produce a more
clear indication of a time trend if one exists. Plotting the raw responses in time sequence can also
sometimes detect trend changes in a process that residual plots might not detect.

Plot of Residuals Versus Corresponding Predicted Values

Check for
increasing
residuals as
size of fitted
value
increases

Plotting residuals versus the value of a fitted response should produce a distribution of points
scattered randomly about 0, regardless of the size of the fitted value. Quite commonly, however,
residual values may increase as the size of the fitted value increases. When this happens, the
residual cloud becomes "funnel shaped" with the larger end toward larger fitted values; that is, the
residuals have larger and larger scatter as the value of the response increases. Plotting the
absolute values of the residuals instead of the signed values will produce a "wedge-shaped"
distribution; a smoothing function is added to each graph which helps to show the trend.

5.2.4. Are the model residuals well-behaved?
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Sample
residuals
versus fitted
values plot
showing
increasing
residuals

Sample
residuals
versus fitted
values plot
that does not
show
increasing
residuals

5.2.4. Are the model residuals well-behaved?
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Interpretation
of the
residuals
versus fitted
values plots

A residual distribution such as that in Figure 2.6 showing a trend to higher absolute residuals as
the value of the response increases suggests that one should transform the response, perhaps by
modeling its logarithm or square root, etc., (contractive transformations). Transforming a
response in this fashion often simplifies its relationship with a predictor variable and leads to
simpler models. Later sections discuss transformation in more detail. Figure 2.7 plots the
residuals after a transformation on the response variable was used to reduce the scatter. Notice the
difference in scales on the vertical axes.

Independence of Residuals from Factor Settings

Sample
residuals
versus factor
setting plot

5.2.4. Are the model residuals well-behaved?
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Sample
residuals
versus factor
setting plot
after adding
a quadratic
term

5.2.4. Are the model residuals well-behaved?
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Interpreation
of residuals
versus factor
setting plots

Figure 2.8 shows that the size of the residuals changed as a function of a predictor's settings. A
graph like this suggests that the model needs a higher-order term in that predictor or that one
should transform the predictor using a logarithm or square root, for example. Figure 2.9 shows
the residuals for the same response after adding a quadratic term. Notice the single point widely
separated from the other residuals in Figure 2.9. This point is an "outlier." That is, its position is
well within the range of values used for this predictor in the investigation, but its result was
somewhat lower than the model predicted. A signal that curvature is present is a trace resembling
a "frown" or a "smile" in these graphs.

Sample
residuals
versus factor
setting plot
lacking one
or more
higher-order
terms

5.2.4. Are the model residuals well-behaved?
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Interpretation
of plot

The example given in Figures 2.8 and 2.9 obviously involves five levels of the predictor. The
experiment utilized a response surface design. For the simple factorial design that includes center
points, if the response model being considered lacked one or more higher-order terms, the plot of
residuals versus factor settings might appear as in Figure 2.10.

Graph
indicates
prescence of
curvature

While the graph gives a definite signal that curvature is present, identifying the source of that
curvature is not possible due to the structure of the design. Graphs generated using the other
predictors in that situation would have very similar appearances.

Additional
discussion of
residual
analysis

Note: Residuals are an important subject discussed repeatedly in this Handbook. For example,
graphical residual plots using Dataplot are discussed in Chapter 1 and the general examination of
residuals as a part of model building is discussed in Chapter 4.

5.2.4. Are the model residuals well-behaved?
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5. Process Improvement

5.3.Choosing an experimental design

Contents of
Section 3

This section describes in detail the process of choosing an experimental
design to obtain the results you need. The basic designs an engineer
needs to know about are described in detail.

Note that
this section
describes
the basic
designs used
for most
engineering
and
scientific
applications

Set objectives1.  

Select process variables and levels2.  

Select experimental design

Completely randomized designs1.  

Randomized block designs

Latin squares1.  

Graeco-Latin squares2.  

Hyper-Graeco-Latin squares3.  

2.  

Full factorial designs

Two-level full factorial designs1.  

Full factorial example2.  

Blocking of full factorial designs3.  

3.  

Fractional factorial designs

A 23-1 half-fraction design1.  

How to construct a 23-1  design2.  

Confounding3.  

Design resolution4.  

Use of fractional factorial designs5.  

Screening designs6.  

Fractional factorial designs summary tables7.  

4.  

Plackett-Burman designs5.  

Response surface (second-order) designs

Central composite designs1.  

6.  

3.  

5.3. Choosing an experimental design
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Box-Behnken designs2.  

Response surface design comparisons3.  

Blocking a response surface design4.  

Adding center points7.  

Improving fractional design resolution

Mirror-image foldover designs1.  

Alternative foldover designs2.  

8.  

Three-level full factorial designs9.  

Three-level, mixed level and fractional factorial designs10.  

5.3. Choosing an experimental design
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5. Process Improvement
5.3. Choosing an experimental design

5.3.1.What are the objectives?

Planning an
experiment
begins with
carefully
considering
what the
objectives
(or goals)
are

The objectives for an experiment are best determined by a team
discussion. All of the objectives should be written down, even the
"unspoken" ones.

The group should discuss which objectives are the key ones, and which
ones are "nice but not really necessary". Prioritization of the objectives
helps you decide which direction to go with regard to the selection of
the factors, responses and the particular design. Sometimes prioritization
will force you to start over from scratch when you realize that the
experiment you decided to run does not meet one or more critical
objectives.

Types of
designs

Examples of goals were given earlier in Section 5.1.2, in which we
described four broad categories of experimental designs, with various
objectives for each. These were:

Comparative designs to:

choose between alternatives, with narrow scope, suitable
for an initial comparison (see Section 5.3.3.1)

❍   

choose between alternatives, with broad scope, suitable for
a confirmatory comparison (see Section 5.3.3.2)

❍   

●   

Screening designs to identify which factors/effects are important

when you have 2 - 4 factors and can perform a full factorial
(Section 5.3.3.3)

❍   

when you have more than 3 factors and want to begin with
as small a design as possible (Section 5.3.3.4 and 5.3.3.5)

❍   

when you have some qualitative factors, or you have some
quantitative factors that are known to have a
non-monotonic effect (Section 3.3.3.10)

❍   

Note that some authors prefer to restrict the term screening design
to the case where you are trying to extract the most important
factors from a large (say > 5) list of initial factors (usually a
fractional factorial design). We include the case with a smaller

●   

5.3.1. What are the objectives?

http://www.itl.nist.gov/div898/handbook/pri/section3/pri31.htm (1 of 2) [7/1/2003 4:15:36 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


number of factors, usually a full factorial design, since the basic
purpose and analysis is similar.

Response Surface modeling to achieve one or more of the
following objectives:

hit a target❍   

maximize or minimize a response❍   

reduce variation by locating a region where the process is
easier to manage

❍   

make a process robust (note: this objective may often be
accomplished with screening designs rather than with
response surface designs - see Section 5.5.6)

❍   

●   

Regression modeling
to estimate a precise model, quantifying the dependence of
response variable(s) on process inputs.

❍   

●   

Based on
objective,
where to go
next

After identifying the objective listed above that corresponds most
closely to your specific goal, you can

proceed to the next section in which we discuss selecting
experimental factors

●   

and then

select the appropriate design named in section 5.3.3 that suits
your objective (and follow the related links).

●   

5.3.1. What are the objectives?
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5. Process Improvement
5.3. Choosing an experimental design

5.3.2.How do you select and scale the process
variables?

Guidelines
to assist the
engineering
judgment
process of
selecting
process
variables
for a DOE

Process variables include both inputs and outputs - i.e., factors and responses. The
selection of these variables is best done as a team effort. The team should

Include all important factors (based on engineering judgment).●   

Be bold, but not foolish, in choosing the low and high factor levels.●   

Check the factor settings for impractical or impossible combinations - i.e.,
very low pressure and very high gas flows.

●   

Include all relevant responses.●   

Avoid using only responses that combine two or more measurements of the
process. For example, if interested in selectivity (the ratio of two etch
rates), measure both rates, not just the ratio.

●   

Be careful
when
choosing
the
allowable
range for
each factor

We have to choose the range of the settings for input factors, and it is wise to give
this some thought beforehand rather than just try extreme values. In some cases,
extreme values will give runs that are not feasible; in other cases, extreme ranges
might move one out of a smooth area of the response surface into some jagged
region, or close to an asymptote.

Two-level
designs
have just a 
"high" and
a "low"
setting for
each factor

The most popular experimental designs are two-level designs. Why only two
levels? There are a number of good reasons why two is the most common choice
amongst engineers: one reason is that it is ideal for screening designs, simple and
economical; it also gives most of the information required to go to a multilevel
response surface experiment if one is needed.

5.3.2. How do you select and scale the process variables?
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Consider
adding
some
center
points to
your
two-level
design

The term "two-level design" is something of a misnomer, however, as it is
recommended to include some center points during the experiment (center points
are located in the middle of the design `box').

Notation for 2-Level Designs

Matrix
notation for
describing
an
experiment

The standard layout for a 2-level design uses +1 and -1 notation to denote the
"high level" and the "low level" respectively, for each factor. For example, the
matrix below

 Factor 1 (X1) Factor 2 (X2)
Trial 1 -1 -1
Trial 2 +1 -1
Trial 3 -1 +1
Trial 4 +1 +1

describes an experiment in which 4 trials (or runs) were conducted with each
factor set to high or low during a run according to whether the matrix had a +1 or
-1 set for the factor during that trial. If the experiment had more than 2 factors,
there would be an additional column in the matrix for each additional factor.

Note: Some authors shorten the matrix notation for a two-level design by just
recording the plus and minus signs, leaving out the "1's".

Coding the
data

The use of +1 and -1 for the factor settings is called coding the data. This aids in
the interpretation of the coefficients fit to any experimental model. After factor
settings are coded, center points have the value "0". Coding is described in more
detail in the DOE glossary.

The Model or Analysis Matrix

5.3.2. How do you select and scale the process variables?
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Design
matrices

If we add an "I" column and an "X1*X2" column to the matrix of 4 trials for a
two-factor experiment described earlier, we obtain what is known as the model or
analysis matrix for this simple experiment, which is shown below. The model
matrix for a three-factor experiment is shown later in this section.

I X1 X2 X1*X2
+1 -1 -1 +1
+1 +1 -1 -1
+1 -1 +1 -1
+1 +1 +1 +1

Model for
the
experiment

The model for this experiment is

and the "I" column of the design matrix has all 1's to provide for the 0 term. The
X1*X2 column is formed by multiplying the "X1" and "X2" columns together,
row element by row element. This column gives interaction term for each trial.

Model in
matrix
notation

In matrix notation, we can summarize this experiment by

Y = X  + experimental error

for which Xis the 4 by 4 design matrix of 1's and -1's shown above,  is the vector

of unknown model coefficients  and Y is a vector consisting of
the four trial response observations.

Orthogonal Property of Scaling in a 2-Factor Experiment

Coding
produces
orthogonal
columns

Coding is sometime called "orthogonal coding" since all the columns of a coded
2-factor design matrix (except the "I" column) are typically orthogonal. That is,
the dot product for any pair of columns is zero. For example, for X1 and X2:
(-1)(-1) + (+1)(-1) + (-1)(+1) + (+1)(+1) = 0.

5.3.2. How do you select and scale the process variables?
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5. Process Improvement
5.3. Choosing an experimental design

5.3.3.How do you select an experimental
design?

A design is
selected
based on the
experimental
objective
and the
number of
factors

The choice of an experimental design depends on the objectives of the
experiment and the number of factors to be investigated.

Experimental Design Objectives

Types of
designs are
listed here
according to
the
experimental
objective
they meet

Types of designs are listed here according to the experimental objective
they meet.

Comparative objective: If you have one or several factors under
investigation, but the primary goal of your experiment is to make
a conclusion about one a-priori important factor, (in the presence
of, and/or in spite of the existence of the other factors), and the
question of interest is whether or not that factor is "significant",
(i.e., whether or not there is a significant change in the response
for different levels of that factor), then you have a comparative
problem and you need a comparative design solution.

●   

Screening objective: The primary purpose of the experiment is
to select or screen out the few important main effects from the
many less important ones. These screening designs are also
termed main effects designs.

●   

Response Surface (method) objective: The experiment is
designed to allow us to estimate interaction and even quadratic
effects, and therefore give us an idea of the (local) shape of the
response surface we are investigating. For this reason, they are
termed response surface method (RSM) designs. RSM designs are
used to:

Find improved or optimal process settings❍   

●   

5.3.3. How do you select an experimental design?
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Troubleshoot process problems and weak points❍   

Make a product or process more robust against external
and non-controllable influences. "Robust" means relatively
insensitive to these influences.

❍   

Optimizing responses when factors are proportions of a
mixture objective: If you have factors that are proportions of a
mixture and you want to know what the "best" proportions of the
factors are so as to maximize (or minimize) a response, then you
need a mixture design.

●   

Optimal fitting of a regression model objective: If you want to
model a response as a mathematical function (either known or
empirical) of a few continuous factors and you desire "good"
model parameter estimates (i.e., unbiased and minimum
variance), then you need a regression design.

●   

Mixture and
regression
designs

Mixture designs are discussed briefly in section 5 (Advanced Topics)
and regression designs for a single factor are discussed in chapter 4.
Selection of designs for the remaining 3 objectives is summarized in the
following table.

Summary
table for
choosing an
experimental
design for
comparative,
screening,
and
response
surface
designs

TABLE 3.1  Design Selection Guideline

Number
of Factors

Comparative
Objective

Screening
Objective

Response
Surface

Objective

1

1-factor
completely
randomized

design

_ _

2 - 4
Randomized
block design

Full or fractional
factorial

Central
composite or
Box-Behnken

5 or more
Randomized
block design

Fractional factorial
or Plackett-Burman

Screen first to
reduce number

of factors

Resources
and degree
of control
over wrong
decisions

Choice of a design from within these various types depends on the
amount of resources available and the degree of control over making
wrong decisions (Type I and Type II errors for testing hypotheses) that
the experimenter desires.
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Save some
runs for
center points
and "redos"
that might
be needed

It is a good idea to choose a design that requires somewhat fewer runs
than the budget permits, so that center point runs can be added to check
for curvature in a 2-level screening design and backup resources are
available to redo runs that have processing mishaps.
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.1.Completely randomized designs

These designs
are for studying
the effects of
one primary
factor without
the need to take
other nuisance
factors into
account

Here we consider completely randomized designs that have one
primary factor. The experiment compares the values of a response
variable based on the different levels of that primary factor.

For completely randomized designs, the levels of the primary factor
are randomly assigned to the experimental units. By randomization,
we mean that the run sequence of the experimental units is
determined randomly. For example, if there are 3 levels of the
primary factor with each level to be run 2 times, then there are 6
factorial possible run sequences (or 6! ways to order the
experimental trials). Because of the replication, the number of unique
orderings is 90 (since 90 = 6!/(2!*2!*2!)). An example of an
unrandomized design would be to always run 2 replications for the
first level, then 2 for the second level, and finally 2 for the third
level. To randomize the runs, one way would be to put 6 slips of
paper in a box with 2 having level 1, 2 having level 2, and 2 having
level 3. Before each run, one of the slips would be drawn blindly
from the box and the level selected would be used for the next run of
the experiment.

Randomization
typically
performed by
computer
software

In practice, the randomization is typically performed by a computer
program (in Dataplot, see the Generate Random Run Sequence menu
under the main DEX menu). However, the randomization can also be
generated from random number tables or by some physical
mechanism (e.g., drawing the slips of paper).

Three key
numbers

All completely randomized designs with one primary factor are
defined by 3 numbers:

k = number of factors (= 1 for these designs)
L = number of levels
n = number of replications

and the total sample size (number of runs) is N = k x L x n.

5.3.3.1. Completely randomized designs
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Balance Balance dictates that the number of replications be the same at each
level of the factor (this will maximize the sensitivity of subsequent
statistical t (or F) tests).

Typical
example of a
completely
randomized
design

A typical example of a completely randomized design is the
following:

k = 1 factor (X1)
L = 4 levels of that single factor (called "1", "2", "3", and "4")
n = 3 replications per level
N = 4 levels * 3 replications per level = 12 runs

A sample
randomized
sequence of
trials

The randomized sequence of trials might look like:

X1
3
1
4
2
2
1
3
4
1
2
4
3

Note that in this example there are 12!/(3!*3!*3!*3!) = 369,600 ways
to run the experiment, all equally likely to be picked by a
randomization procedure.

Model for a
completely
randomized
design

The model for the response is

Yi,j =  + Ti + random error

with

Yi,j being any observation for which X1 = i
 (or mu) is the general location parameter

Ti is the effect of having treatment level i

Estimates and Statistical Tests

5.3.3.1. Completely randomized designs
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Estimating and
testing model
factor levels

Estimate for  :      = the average of all the data

Estimate for Ti :      - 

with  = average of all Y for which X1 = i.

Statistical tests for levels of X1 are shown in the section on one-way
ANOVA in Chapter 7.
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.2.Randomized block designs

Blocking to
"remove" the
effect of
nuisance
factors

For randomized block designs, there is one factor or variable that is of
primary interest. However, there are also several other nuisance
factors.

Nuisance factors are those that may affect the measured result, but are
not of primary interest. For example, in applying a treatment, nuisance
factors might be the specific operator who prepared the treatment, the
time of day the experiment was run, and the room temperature. All
experiments have nuisance factors. The experimenter will typically
need to spend some time deciding which nuisance factors are
important enough to keep track of or control, if possible, during the
experiment.

Blocking used
for nuisance
factors that
can be
controlled

When we can control nuisance factors, an important technique known
as blocking can be used to reduce or eliminate the contribution to
experimental error contributed by nuisance factors. The basic concept
is to create homogeneous blocks in which the nuisance factors are held
constant and the factor of interest is allowed to vary. Within blocks, it
is possible to assess the effect of different levels of the factor of
interest without having to worry about variations due to changes of the
block factors, which are accounted for in the analysis.

Definition of
blocking
factors

A nuisance factor is used as a blocking factor if every level of the
primary factor occurs the same number of times with each level of the
nuisance factor. The analysis of the experiment will focus on the
effect of varying levels of the primary factor within each block of the
experiment.

Block for a
few of the
most
important
nuisance
factors

The general rule is:

"Block what you can, randomize what you cannot."

Blocking is used to remove the effects of a few of the most important
nuisance variables. Randomization is then used to reduce the
contaminating effects of the remaining nuisance variables.

5.3.3.2. Randomized block designs
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Table of
randomized
block designs

One useful way to look at a randomized block experiment is to
consider it as a collection of completely randomized experiments, each
run within one of the blocks of the total experiment.

Randomized Block Designs (RBD)
Name of
Design

Number of
Factors

k

Number of
Runs

n

2-factor RBD 2 L1 * L2

3-factor RBD 3 L1 * L2 * L3

4-factor RBD 4 L1 * L2 * L3 * L4

. . .
k-factor RBD k L1 * L2 * ... * Lk

with

L1 = number of levels (settings) of factor 1
L2 = number of levels (settings) of factor 2
L3 = number of levels (settings) of factor 3
L4 = number of levels (settings) of factor 4

   .
   .
   .
 

Lk = number of levels (settings) of factor k

Example of a Randomized Block Design

Example of a
randomized
block design

Suppose engineers at a semiconductor manufacturing facility want to
test whether different wafer implant material dosages have a
significant effect on resistivity measurements after a diffusion process
taking place in a furnace. They have four different dosages they want
to try and enough experimental wafers from the same lot to run three
wafers at each of the dosages.

Furnace run
is a nuisance
factor

The nuisance factor they are concerned with is "furnace run" since it is
known that each furnace run differs from the last and impacts many
process parameters.

5.3.3.2. Randomized block designs
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Ideal would
be to
eliminate
nuisance
furnace factor

An ideal way to run this experiment would be to run all the 4x3=12
wafers in the same furnace run. That would eliminate the nuisance
furnace factor completely. However, regular production wafers have
furnace priority, and only a few experimental wafers are allowed into
any furnace run at the same time.

Non-Blocked
method

A non-blocked way to run this experiment would be to run each of the
twelve experimental wafers, in random order, one per furnace run.
That would increase the experimental error of each resistivity
measurement by the run-to-run furnace variability and make it more
difficult to study the effects of the different dosages. The blocked way
to run this experiment, assuming you can convince manufacturing to
let you put four experimental wafers in a furnace run, would be to put
four wafers with different dosages in each of three furnace runs. The
only randomization would be choosing which of the three wafers with
dosage 1 would go into furnace run 1, and similarly for the wafers
with dosages 2, 3 and 4.

Description of
the
experiment

Let X1 be dosage "level" and X2 be the blocking factor furnace run.
Then the experiment can be described as follows:

k = 2 factors (1 primary factor X1 and 1 blocking factor X2)
L1 = 4 levels of factor X1
L2 = 3 levels of factor X2
n = 1 replication per cell
N =L1 * L2 = 4 * 3 = 12 runs

Design trial
before
randomization

Before randomization, the design trials look like:

X1 X2
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
4 1
4 2
4 3

5.3.3.2. Randomized block designs
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Matrix
representation

An alternate way of summarizing the design trials would be to use a
4x3 matrix whose 4 rows are the levels of the treatment X1 and whose
columns are the 3 levels of the blocking variable X2. The cells in the
matrix have indices that match the X1, X2 combinations above.

By extension, note that the trials for any K-factor randomized block
design are simply the cell indices of a K dimensional matrix.

Model for a Randomized Block Design

Model for a
randomized
block design

The model for a randomized block design with one nuisance variable
is

Yi,j =  + Ti + Bj + random error

where

Yi,j is any observation for which X1 = i and X2 = j
X1 is the primary factor
X2 is the blocking factor

 is the general location parameter (i.e., the mean)
Ti is the effect for being in treatment i (of factor X1)
Bj is the effect for being in block j (of factor X2)

Estimates for a Randomized Block Design

Estimating
factor effects
for a
randomized
block design

Estimate for  :      = the average of all the data

Estimate for Ti :      - 

with  = average of all Y for which X1 = i.

Estimate for Bj :      - 

with  = average of all Y for which X2 = j.

5.3.3.2. Randomized block designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.2. Randomized block designs

5.3.3.2.1.Latin square and related designs

Latin square
(and related)
designs are
efficient
designs to
block from 2
to 4 nuisance
factors

Latin square designs, and the related Graeco-Latin square and
Hyper-Graeco-Latin square designs, are a special type of comparative
design.

There is a single factor of primary interest, typically called the
treatment factor, and several nuisance factors. For Latin square designs
there are 2 nuisance factors, for Graeco-Latin square designs there are
3 nuisance factors, and for Hyper-Graeco-Latin square designs there
are 4 nuisance factors.

Nuisance
factors used
as blocking
variables

The nuisance factors are used as blocking variables.

For Latin square designs, the 2 nuisance factors are divided into
a tabular grid with the property that each row and each column
receive each treatment exactly once.

1.  

As with the Latin square design, a Graeco-Latin square design is
a kxk tabular grid in which k is the number of levels of the
treatment factor. However, it uses 3 blocking variables instead
of the 2 used by the standard Latin square design.

2.  

A Hyper-Graeco-Latin square design is also a kxk tabular grid
with k denoting the number of levels of the treatment factor.
However, it uses 4 blocking variables instead of the 2 used by
the standard Latin square design.

3.  

5.3.3.2.1. Latin square and related designs
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Advantages
and
disadvantages
of Latin
square
designs

The advantages of Latin square designs are:

They handle the case when we have several nuisance factors and
we either cannot combine them into a single factor or we wish to
keep them separate.

1.  

They allow experiments with a relatively small number of runs.2.  

The disadvantages are:

The number of levels of each blocking variable must equal the
number of levels of the treatment factor.

1.  

The Latin square model assumes that there are no interactions
between the blocking variables or between the treatment
variable and the blocking variable.

2.  

Note that Latin square designs are equivalent to specific fractional
factorial designs (e.g., the 4x4 Latin square design is equivalent to a
43-1fractional factorial design).

Summary of
designs

Several useful designs are described in the table below.

Some Useful Latin Square, Graeco-Latin Square and
Hyper-Graeco-Latin Square Designs

Name of
Design

Number of
Factors

k

Number of
Runs

N

3-by-3 Latin Square 3 9
4-by-4 Latin Square 3 16
5-by-5 Latin Square 3 25
   
3-by-3 Graeco-Latin Square 4 9
4-by-4 Graeco-Latin Square 4 16
5-by-5 Graeco-Latin Square 4 25
   
4-by-4 Hyper-Graeco-Latin Square 5 16
5-by-5 Hyper-Graeco-Latin Square 5 25

Model for Latin Square and Related Designs

5.3.3.2.1. Latin square and related designs
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Latin square
design model
and estimates
for effect
levels

The model for a response for a latin square design is

with

Yijk denoting any observation for which

X1 = i, X2 = j, X3 = k
X1 and X2 are blocking factors
X3 is the primary factor

      denoting the general location parameter
Ri     denoting the effect for block i
Cj     denoting the effect for block j
Tk     denoting the effect for treatment k

Models for Graeco-Latin and Hyper-Graeco-Latin squares are the
obvious extensions of the Latin square model, with additional blocking
variables added.

Estimates for Latin Square Designs

Estimates Estimate for :  = the average of all the data
Estimate for Ri:  - 

 = average of all Y for which X1 = i

Estimate for Cj:  - 

 = average of all Y for which X2 = j

Estimate for Tk:  - 

 = average of all Y for which X3 = k

Randomize as
much as
design allows

Designs for Latin squares with 3-, 4-, and 5-level factors are given
next. These designs show what the treatment combinations should be
for each run. When using any of these designs, be sure to randomize
the treatment units and trial order, as much as the design allows.

For example, one recommendation is that a Latin square design be
randomly selected from those available, then randomize the run order.

Latin Square Designs for 3-, 4-, and 5-Level Factors

5.3.3.2.1. Latin square and related designs
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Designs for
3-level
factors (and 2
nuisance or
blocking
factors)

3-Level Factors
X1 X2 X3
row

blocking
factor

column
blocking

factor

treatment
factor

1 1 1
1 2 2
1 3 3
2 1 3
2 2 1
2 3 2
3 1 2
3 2 3
3 3 1

with

k = 3 factors (2 blocking factors and 1 primary factor)
L1 = 3 levels of factor X1 (block)
L2 = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
N = L1 * L2 = 9 runs

This can alternatively be represented as

A B C
C A B
B C A

Designs for
4-level
factors (and 2
nuisance or
blocking
factors)

4-Level Factors
X1 X2 X3
row

blocking
factor

column
blocking

factor

treatment
factor

1 1 1
1 2 2
1 3 4
1 4 3
2 1 4
2 2 3
2 3 1
2 4 2
3 1 2

5.3.3.2.1. Latin square and related designs
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3 2 4
3 3 3
3 4 1
4 1 3
4 2 1
4 3 2
4 4 4

with

k = 3 factors (2 blocking factors and 1 primary factor)
L1 = 4 levels of factor X1 (block)
L2 = 4 levels of factor X2 (block)
L3 = 4 levels of factor X3 (primary)
N = L1 * L2 = 16 runs

This can alternatively be represented as

A B D C
D C A B
B D C A
C A B D

Designs for
5-level
factors (and 2
nuisance or
blocking
factors)

5-Level Factors
X1 X2 X3
row

blocking
factor

column
blocking

factor

treatment
factor

1 1 1
1 2 2
1 3 3
1 4 4
1 5 5
2 1 3
2 2 4
2 3 5
2 4 1
2 5 2
3 1 5
3 2 1
3 3 2
3 4 3
3 5 4
4 1 2

5.3.3.2.1. Latin square and related designs
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4 2 3
4 3 4
4 4 5
4 5 1
5 1 4
5 2 5
5 3 1
5 4 2
5 5 3

with

k = 3 factors (2 blocking factors and 1 primary factor)
L1 = 5 levels of factor X1 (block)
L2 = 5 levels of factor X2 (block)
L3 = 5 levels of factor X3 (primary)
N = L1 * L2 = 25 runs

This can alternatively be represented as

A B C D E
C D E A B
E A B C D
B C D E A
D E A B C

Further
information

More details on Latin square designs can be found in Box, Hunter, and
Hunter (1978).

5.3.3.2.1. Latin square and related designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.2. Randomized block designs

5.3.3.2.2.Graeco-Latin square designs

These
designs
handle 3
nuisance
factors

Graeco-Latin squares, as described on the previous page, are efficient
designs to study the effect of one treatment factor in the presence of 3
nuisance factors. They are restricted, however, to the case in which all
the factors have the same number of levels.

Randomize
as much as
design
allows

Designs for 3-, 4-, and 5-level factors are given on this page. These
designs show what the treatment combinations would be for each run.
When using any of these designs, be sure to randomize the treatment
units and trial order, as much as the design allows.

For example, one recommendation is that a Graeco-Latin square design
be randomly selected from those available, then randomize the run
order.

Graeco-Latin Square Designs for 3-, 4-, and 5-Level Factors

Designs for
3-level
factors

3-Level Factors
X1 X2 X3 X4
row

blocking
factor

column
blocking

factor

blocking
factor

treatment
factor

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

5.3.3.2.2. Graeco-Latin square designs
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with

k = 4 factors (3 blocking factors and 1 primary factor)
L1 = 3 levels of factor X1 (block)
L2 = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
L4 = 3 levels of factor X4 (primary)
N = L1 * L2 = 9 runs

This can alternatively be represented as (A, B, and C represent the
treatment factor and 1, 2, and 3 represent the blocking factor):

A1 B2 C3
C2 A3 B1
B3 C1 A2

Designs for
4-level
factors

4-Level Factors
X1 X2 X3 X4
row

blocking
factor

column
blocking

factor

blocking
factor

treatment
factor

1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
2 1 2 4
2 2 1 3
2 3 4 2
2 4 3 1
3 1 3 2
3 2 4 1
3 3 1 4
3 4 2 3
4 1 4 3
4 2 3 4
4 3 2 1
4 4 1 2

with

k = 4 factors (3 blocking factors and 1 primary factor)
L1 = 3 levels of factor X1 (block)
L2 = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
L4 = 3 levels of factor X4 (primary)

5.3.3.2.2. Graeco-Latin square designs
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N = L1 * L2 = 16 runs

This can alternatively be represented as (A, B, C, and D represent the
treatment factor and 1, 2, 3, and 4 represent the blocking factor):

A1 B2 C3 D4
D2 C1 B4 A3
B3 A4 D1 C2
C4 D3 A2 B1

Designs for
5-level
factors

5-Level Factors
X1 X2 X3 X4
row

blocking
factor

column
blocking

factor

blocking
factor

treatment
factor

1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
1 5 5 5
2 1 2 3
2 2 3 4
2 3 4 5
2 4 5 1
2 5 1 2
3 1 3 5
3 2 4 1
3 3 5 2
3 4 1 3
3 5 2 4
4 1 4 2
4 2 5 3
4 3 1 4
4 4 2 5
4 5 3 1
5 1 5 4
5 2 1 5
5 3 2 1
5 4 3 2
5 5 4 3

with

k = 4 factors (3 blocking factors and 1 primary factor)
L1 = 3 levels of factor X1 (block)

5.3.3.2.2. Graeco-Latin square designs
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L2 = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
L4 = 3 levels of factor X4 (primary)
N = L1 * L2 = 25 runs

This can alternatively be represented as (A, B, C, D, and E represent the
treatment factor and 1, 2, 3, 4, and 5 represent the blocking factor):

A1 B2 C3 D4 E5
C2 D3 E4 A5 B1
E3 A4 B5 C1 D2
B4 C5 D1 E2 A3
D5 E1 A2 B3 C4

Further
information

More designs are given in Box, Hunter, and Hunter (1978).

5.3.3.2.2. Graeco-Latin square designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.2. Randomized block designs

5.3.3.2.3.Hyper-Graeco-Latin square
designs

These designs
handle 4
nuisance
factors

Hyper-Graeco-Latin squares, as described earlier, are efficient designs
to study the effect of one treatment factor in the presence of 4 nuisance
factors. They are restricted, however, to the case in which all the
factors have the same number of levels.

Randomize as
much as
design allows

Designs for 4- and 5-level factors are given on this page. These
designs show what the treatment combinations should be for each run.
When using any of these designs, be sure to randomize the treatment
units and trial order, as much as the design allows.

For example, one recommendation is that a hyper-Graeco-Latin square
design be randomly selected from those available, then randomize the
run order.

Hyper-Graeco-Latin Square Designs for 4- and 5-Level Factors

Designs for
4-level factors
(there are no
3-level factor
Hyper-Graeco
Latin square
designs)

4-Level Factors
X1 X2 X3 X4 X5
row

blocking
factor

column
blocking

factor

blocking
factor

blocking
factor

treatment
factor

1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
2 1 4 2 3
2 2 3 1 4
2 3 2 4 1
2 4 1 3 2
3 1 2 3 4

5.3.3.2.3. Hyper-Graeco-Latin square designs
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3 2 1 4 3
3 3 4 1 2
3 4 3 2 1
4 1 3 4 2
4 2 4 3 1
4 3 1 2 4
4 4 2 1 3

with

k = 5 factors (4 blocking factors and 1 primary factor)
L1 = 4 levels of factor X1 (block)
L2 = 4 levels of factor X2 (block)
L3 = 4 levels of factor X3 (primary)
L4 = 4 levels of factor X4 (primary)
L5 = 4 levels of factor X5 (primary)
N = L1 * L2 = 16 runs

This can alternatively be represented as (A, B, C, and D represent the
treatment factor and 1, 2, 3, and 4 represent the blocking factors):

A11 B22 C33 D44
C42 D31 A24 B13
D23 C14 B41 A32
B34 A43 D12 C21

Designs for
5-level factors

5-Level Factors
X1 X2 X3 X4 X5
row

blocking
factor

column
blocking

factor

blocking
factor

blocking
factor

treatment
factor

1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
1 5 5 5 5
2 1 2 3 4
2 2 3 4 5
2 3 4 5 1
2 4 5 1 2
2 5 1 2 3
3 1 3 5 2
3 2 4 1 3
3 3 5 2 4

5.3.3.2.3. Hyper-Graeco-Latin square designs
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3 4 1 3 5
3 5 2 4 1
4 1 4 2 5
4 2 5 3 1
4 3 1 4 2
4 4 2 5 3
4 5 3 1 4
5 1 5 4 3
5 2 1 5 4
5 3 2 1 5
5 4 3 2 1
5 5 4 3 2

with

k = 5 factors (4 blocking factors and 1 primary factor)
L1 = 5 levels of factor X1 (block)
L2 = 5 levels of factor X2 (block)
L3 = 5 levels of factor X3 (primary)
L4 = 5 levels of factor X4 (primary)
L5 = 5 levels of factor X5 (primary)
N = L1 * L2 = 25 runs

This can alternatively be represented as (A, B, C, D, and E represent
the treatment factor and 1, 2, 3, 4, and 5 represent the blocking
factors):

A11 B22 C33 D44 E55
D23 E34 A45 B51 C12
B35 C41 D52 E31 A24
E42 A53 B14 C25 D31
C54 D15 E21 A32 B43

Further
information

More designs are given in Box, Hunter, and Hunter (1978).

5.3.3.2.3. Hyper-Graeco-Latin square designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.3.Full factorial designs

Full factorial designs in two levels

A design in
which every
setting of
every factor
appears with
every setting
of every other
factor is a
full factorial
design

A common experimental design is one with all input factors set at two
levels each. These levels are called `high' and `low' or `+1' and `-1',
respectively. A design with all possible high/low combinations of all
the input factors is called a full factorial design in two levels.

If there are k factors, each at 2 levels, a full factorial design has 2k

runs.

TABLE 3.2  Number of Runs for a 2k Full Factorial

Number of Factors Number of Runs

2 4

3 8

4 16

5 32

6 64

7 128

Full factorial
designs not
recommended
for 5 or more
factors

As shown by the above table, when the number of factors is 5 or
greater, a full factorial design requires a large number of runs and is
not very efficient. As recommended in the Design Guideline Table, a
fractional factorial design or a Plackett-Burman design is a better
choice for 5 or more factors.

5.3.3.3. Full factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.3. Full factorial designs

5.3.3.3.1.Two-level full factorial designs

Description

Graphical
representation
of a two-level
design with 3
factors

Consider the two-level, full factorial design for three factors, namely
the 23 design. This implies eight runs (not counting replications or
center point runs). Graphically, we can represent the 23 design by the
cube shown in Figure 3.1. The arrows show the direction of increase of
the factors. The numbers `1' through `8' at the corners of the design
box reference the `Standard Order' of runs (see Figure 3.1).

FIGURE 3.1  A 23 two-level, full factorial design; factors X1, X2,
X3

5.3.3.3.1. Two-level full factorial designs
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The design
matrix

In tabular form, this design is given by:

TABLE 3.3  A 23 two-level, full factorial design
table showing runs in `Standard Order'
run X1 X2 X3

1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

The left-most column of Table 3.3, numbers 1 through 8, specifies a
(non-randomized) run order called the `Standard Order.' These
numbers are also shown in Figure 3.1. For example, run 1 is made at
the `low' setting of all three factors.

Standard Order for a 2k Level Factorial Design

Rule for
writing a 2k

full factorial
in "standard
order"

We can readily generalize the 23 standard order matrix to a 2-level full
factorial with k factors. The first (X1) column starts with -1 and
alternates in sign for all 2k runs. The second (X2) column starts with -1
repeated twice, then alternates with 2 in a row of the opposite sign
until all 2k places are filled. The third (X3) column starts with -1
repeated 4 times, then 4 repeats of +1's and so on. In general, the i-th
column (Xi) starts with 2i-1 repeats of -1 folowed by 2i-1 repeats of +1.

Example of a 23 Experiment

5.3.3.3.1. Two-level full factorial designs
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Analysis
matrix for the
3-factor
complete
factorial

An engineering experiment called for running three factors; namely,
Pressure (factor X1), Table speed (factor X2) and Down force (factor
X3), each at a `high' and `low' setting, on a production tool to
determine which had the greatest effect on product uniformity. Two
replications were run at each setting. A (full factorial) 23 design with 2
replications calls for 8*2=16 runs.

TABLE 3.4 Model or Analysis Matrix for a 23 Experiment
Model Matrix Response

Variables

I X1 X2 X1*X2 X3 X1*X3 X2*X3 X1*X2*X3
Rep

1
Rep

2

+1 -1 -1 +1 -1 +1 +1 -1 -3 -1
+1 +1 -1 -1 -1 -1 +1 +1  0 -1
+1 -1 +1 -1 -1 +1 -1 +1 -1  0
+1 +1 +1 +1 -1 -1 -1 -1 +2 +3
+1 -1 -1 +1 +1 -1 -1 +1 -1  0
+1 +1 -1 -1 +1 +1 -1 -1 +2 +1
+1 -1 +1 -1 +1 -1 +1 -1 +1 +1
+1 +1 +1 +1 +1 +1 +1 +1 +6 +5

The block with the 1's and -1's is called the Model Matrix or the
Analysis Matrix. The table formed by the columns X1, X2 and X3 is
called the Design Table or Design Matrix.

Orthogonality Properties of Analysis Matrices for 2-Factor
Experiments

Eliminate
correlation
between
estimates of
main effects
and
interactions

When all factors have been coded so that the high value is "1" and the
low value is "-1", the design matrix for any full (or suitably chosen
fractional) factorial experiment has columns that are all pairwise
orthogonal and all the columns (except the "I" column) sum to 0.

The orthogonality property is important because it eliminates
correlation between the estimates of the main effects and interactions.

5.3.3.3.1. Two-level full factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.3. Full factorial designs

5.3.3.3.2.Full factorial example

A Full Factorial Design Example

An example of
a full factorial
design with 3
factors

The following is an example of a full factorial design with 3 factors that
also illustrates replication, randomization, and added center points.

Suppose that we wish to improve the yield of a polishing operation. The
three inputs (factors) that are considered important to the operation are
Speed (X1), Feed (X2), and Depth (X3). We want to ascertain the relative
importance of each of these factors on Yield (Y).

Speed, Feed and Depth can all be varied continuously along their
respective scales, from a low to a high setting. Yield is observed to vary
smoothly when progressive changes are made to the inputs. This leads us
to believe that the ultimate response surface for Y will be smooth.

Table of factor
level settings

TABLE 3.5  High (+1), Low (-1), and Standard (0)
Settings for a Polishing Operation

 Low (-1) Standard (0) High (+1) Units
Speed 16 20 24 rpm
Feed 0.001 0.003 0.005 cm/sec

Depth 0.01 0.015 0.02 cm/sec

Factor Combinations

5.3.3.3.2. Full factorial example
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Graphical
representation
of the factor
level settings

We want to try various combinations of these settings so as to establish
the best way to run the polisher. There are eight different ways of
combining high and low settings of Speed, Feed, and Depth. These eight
are shown at the corners of the following diagram.

FIGURE 3.2  A 23 Two-level, Full Factorial Design; Factors X1, X2,
X3. (The arrows show the direction of increase of the factors.)

23 implies 8
runs

Note that if we have k factors, each run at two levels, there will be 2k

different combinations of the levels. In the present case, k = 3 and 23 = 8.

Full Model Running the full complement of all possible factor combinations means
that we can estimate all the main and interaction effects. There are three
main effects, three two-factor interactions, and a three-factor interaction,
all of which appear in the full model as follows:

A full factorial design allows us to estimate all eight `beta' coefficients
.

Standard order

5.3.3.3.2. Full factorial example
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Coded
variables in
standard order

The numbering of the corners of the box in the last figure refers to a
standard way of writing down the settings of an experiment called
`standard order'. We see standard order displayed in the following tabular
representation of the eight-cornered box. Note that the factor settings have
been coded, replacing the low setting by -1 and the high setting by 1.

Factor settings
in tabular
form

TABLE 3.6  A 23 Two-level, Full Factorial Design
Table Showing Runs in `Standard Order'

 X1 X2 X3
1 -1 -1 -1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
7 -1 +1 +1
8 +1 +1 +1

Replication

Replication
provides
information on
variability

Running the entire design more than once makes for easier data analysis
because, for each run (i.e., `corner of the design box') we obtain an
average value of the response as well as some idea about the dispersion
(variability, consistency) of the response at that setting.

Homogeneity
of variance

One of the usual analysis assumptions is that the response dispersion is
uniform across the experimental space. The technical term is
`homogeneity of variance'. Replication allows us to check this assumption
and possibly find the setting combinations that give inconsistent yields,
allowing us to avoid that area of the factor space.

5.3.3.3.2. Full factorial example
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Factor settings
in standard
order with
replication

We now have constructed a design table for a two-level full factorial in
three factors, replicated twice.

TABLE 3.7  The 23 Full Factorial Replicated
Twice and Presented in Standard Order

 Speed, X1 Feed, X2 Depth, X3
1 16, -1 .001, -1 .01, -1
2 24, +1 .001, -1 .01, -1
3 16, -1 .005, +1 .01, -1
4 24, +1 .005, +1 .01, -1
5 16, -1 .001, -1 .02, +1
6 24, +1 .001, -1 .02, +1
7 16, -1 .005, +1 .02, +1
8 24, +1 .005, +1 .02, +1
9 16, -1 .001, -1 .01, -1
10 24, +1 .001, -1 .01, -1
11 16, -1 .005, +1 .01, -1
12 24, +1 .005, +1 .01, -1
13 16, -1 .001, -1 .02, +1
14 24, +1 .001, -1 .02, +1
15 16, -1 .005, +1 .02, +1
16 24, +1 .005, +1 .02, +1

Randomization

No
randomization
and no center
points

If we now ran the design as is, in the order shown, we would have two
deficiencies, namely:

no randomization, and1.  

no center points.2.  

5.3.3.3.2. Full factorial example
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Randomization
provides
protection
against
extraneous
factors
affecting the
results

The more freely one can randomize experimental runs, the more insurance
one has against extraneous factors possibly affecting the results, and
hence perhaps wasting our experimental time and effort. For example,
consider the `Depth' column: the settings of Depth, in standard order,
follow a `four low, four high, four low, four high' pattern.

Suppose now that four settings are run in the day and four at night, and
that (unknown to the experimenter) ambient temperature in the polishing
shop affects Yield. We would run the experiment over two days and two
nights and conclude that Depth influenced Yield, when in fact ambient
temperature was the significant influence. So the moral is: Randomize
experimental runs as much as possible.

Table of factor
settings in
randomized
order

Here's the design matrix again with the rows randomized (using the
RAND function of EXCEL). The old standard order column is also shown
for comparison and for re-sorting, if desired, after the runs are in.

TABLE 3.8  The 23 Full Factorial Replicated
Twice with Random Run Order Indicated

Random
Order

Standard
Order X1 X2 X3

1 5 -1 -1 +1
2 15 -1 +1 +1
3 9 -1 -1 -1
4 7 -1 +1 +1
5 3 -1 +1 -1
6 12 +1 +1 -1
7 6 +1 -1 +1
8 4 +1 +1 -1
9 2 +1 -1 -1

10 13 -1 -1 +1
11 8 +1 +1 +1
12 16 +1 +1 +1
13 1 -1 -1 -1
14 14 +1 -1 +1
15 11 -1 +1 -1
16 10 +1 -1 -1

5.3.3.3.2. Full factorial example
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Table showing
design matrix
with
randomization
and center
points

This design would be improved by adding at least 3 centerpoint runs
placed at the beginning, middle and end of the experiment. The final
design matrix is shown below:

TABLE 3.9  The 23 Full Factorial Replicated
Twice with Random Run Order Indicated and

Center Point Runs Added

Random
Order

Standard
Order X1 X2 X3

1  0 0 0
2 5 -1 -1 +1
3 15 -1 +1 +1
4 9 -1 -1 -1
5 7 -1 +1 +1
6 3 -1 +1 -1
7 12 +1 +1 -1
8 6 +1 -1 +1
9  0 0 0

10 4 +1 +1 -1
11 2 +1 -1 -1
12 13 -1 -1 +1
13 8 +1 +1 +1
14 16 +1 +1 +1
15 1 -1 -1 -1
16 14 +1 -1 +1
17 11 -1 +1 -1
18 10 +1 -1 -1
19  0 0 0

5.3.3.3.2. Full factorial example
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.3. Full factorial designs

5.3.3.3.3.Blocking of full factorial designs

Eliminate the
influence of
extraneous
factors by
"blocking"

We often need to eliminate the influence of extraneous factors when
running an experiment. We do this by "blocking".

Previously, blocking was introduced when randomized block designs
were discussed. There we were concerned with one factor in the
presence of one of more nuisance factors. In this section we look at a
general approach that enables us to divide 2-level factorial
experiments into blocks.

For example, assume we anticipate predictable shifts will occur while
an experiment is being run. This might happen when one has to
change to a new batch of raw materials halfway through the
experiment. The effect of the change in raw materials is well known,
and we want to eliminate its influence on the subsequent data analysis.

Blocking in a
23 factorial
design

In this case, we need to divide our experiment into two halves (2
blocks), one with the first raw material batch and the other with the
new batch. The division has to balance out the effect of the materials
change in such a way as to eliminate its influence on the analysis, and
we do this by blocking.

Example Example: An eight-run 23 full factorial has to be blocked into two
groups of four runs each. Consider the design `box' for the 23 full
factorial. Blocking can be achieved by assigning the first block to the
dark-shaded corners and the second block to the open circle corners.

5.3.3.3.3. Blocking of full factorial designs
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Graphical
representation
of blocking
scheme

FIGURE 3.3 Blocking Scheme for a 23 Using Alternate Corners

Three-factor
interaction
confounded
with the block
effect

This works because we are in fact assigning the `estimation' of the
(unwanted) blocking effect to the three-factor interaction, and because
of the special property of two-level designs called orthogonality. That
is, the three-factor interaction is "confounded" with the block effect as
will be seen shortly.

Orthogonality Orthogonality guarantees that we can always estimate the effect of one
factor or interaction clear of any influence due to any other factor or
interaction. Orthogonality is a very desirable property in DOE and this
is a major reason why two-level factorials are so popular and
successful.

5.3.3.3.3. Blocking of full factorial designs
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Table
showing
blocking
scheme

Formally, consider the 23 design table with the three-factor interaction
column added.

TABLE 3.10 Two Blocks for a 23 Design

SPEED
X1

FEED
X2

DEPTH
X3 X1*X2*X3

BLOCK

-1 -1 -1 -1 I
+1 -1 -1 +1 II
-1 +1 -1 +1 II
+1 +1 -1 -1 I
-1 -1 +1 +1 II
+1 -1 +1 -1 I
-1 +1 +1 -1 I
+1 +1 +1 +1 II

Block by
assigning the
"Block effect"
to a
high-order
interaction

Rows that have a `-1' in the three-factor interaction column are
assigned to `Block I' (rows 1, 4, 6, 7), while the other rows are
assigned to `Block II' (rows 2, 3, 5, 8). Note that the Block I rows are
the open circle corners of the design `box' above; Block II are
dark-shaded corners.

Most DOE
software will
do blocking
for you

The general rule for blocking is: use one or a combination of
high-order interaction columns to construct blocks. This gives us a
formal way of blocking complex designs. Apart from simple cases in
which you can design your own blocks, your statistical/DOE software
will do the blocking if asked, but you do need to understand the
principle behind it.

Block effects
are
confounded
with higher-
order
interactions

The price you pay for blocking by using high-order interaction
columns is that you can no longer distinguish the high-order
interaction(s) from the blocking effect - they have been `confounded,'
or `aliased.' In fact, the blocking effect is now the sum of the blocking
effect and the high-order interaction effect. This is fine as long as our
assumption about negligible high-order interactions holds true, which
it usually does.

Center points
within a block

Within a block, center point runs are assigned as if the block were a
separate experiment - which in a sense it is. Randomization takes place
within a block as it would for any non-blocked DOE.

5.3.3.3.3. Blocking of full factorial designs
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5.3.3.3.3. Blocking of full factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.4.Fractional factorial designs

Full factorial
experiments
can require
many runs

The ASQC (1983) Glossary & Tables for Statistical Quality Control
defines fractional factorial design in the following way: "A factorial
experiment in which only an adequately chosen fraction of the
treatment combinations required for the complete factorial experiment
is selected to be run."

A carefully
chosen
fraction of
the runs may
be all that is
necessary

Even if the number of factors, k, in a design is small, the 2k runs
specified for a full factorial can quickly become very large. For
example, 26 = 64 runs is for a two-level, full factorial design with six
factors. To this design we need to add a good number of centerpoint
runs and we can thus quickly run up a very large resource requirement
for runs with only a modest number of factors.

Later
sections will
show how to
choose the
"right"
fraction for
2-level
designs -
these are
both
balanced and
orthogonal

The solution to this problem is to use only a fraction of the runs
specified by the full factorial design. Which runs to make and which to
leave out is the subject of interest here. In general, we pick a fraction
such as ½, ¼, etc. of the runs called for by the full factorial. We use
various strategies that ensure an appropriate choice of runs. The
following sections will show you how to choose an appropriate fraction
of a full factorial design to suit your purpose at hand. Properly chosen
fractional factorial designs for 2-level experiments have the desirable
properties of being both balanced and orthogonal.

2-Level
fractional
factorial
designs
emphasized

Note: We will be emphasizing fractions of two-level designs only. This
is because two-level fractional designs are, in engineering at least, by
far the most popular fractional designs. Fractional factorials where
some factors have three levels will be covered briefly in Section
5.3.3.10.

5.3.3.4. Fractional factorial designs
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5.3.3.4. Fractional factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.1.A 23-1 design (half of a 23)

We can run a
fraction of a
full factorial
experiment
and still be
able to
estimate main
effects

Consider the two-level, full factorial design for three factors, namely
the 23 design. This implies eight runs (not counting replications or
center points). Graphically, as shown earlier, we can represent the 23

design by the following cube:

FIGURE 3.4  A 23 Full Factorial Design;
Factors X1, X2, X3. (The arrows show the direction of increase of
the factors. Numbers `1' through `8' at the corners of the design

cube reference the `Standard Order' of runs)

5.3.3.4.1. A 23-1 design (half of a 23)
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Tabular
representation
of the design

In tabular form, this design (also showing eight observations `yj'
(j = 1,...,8) is given by

TABLE 3.11  A 23 Two-level, Full Factorial Design Table Showing
Runs in `Standard Order,' Plus Observations (yj)

 X1 X2 X3 Y
1 -1 -1 -1 y1 = 33

2 +1 -1 -1 y2 = 63

3 -1 +1 -1 y3 = 41

4 +1 +1 -1 Y4 = 57

5 -1 -1 +1 y5 = 57

6 +1 -1 +1 y6 = 51

7 -1 +1 +1 y7 = 59

8 +1 +1 +1 y8 = 53

Responses in
standard
order

The right-most column of the table lists `y1' through `y8' to indicate the
responses measured for the experimental runs when listed in standard
order. For example, `y1' is the response (i.e., output) observed when
the three factors were all run at their `low' setting. The numbers
entered in the "y" column will be used to illustrate calculations of
effects.

Computing X1
main effect

From the entries in the table we are able to compute all `effects' such
as main effects, first-order `interaction' effects, etc. For example, to
compute the main effect estimate `c1' of factor X1, we compute the
average response at all runs with X1 at the `high' setting, namely
(1/4)(y2 + y4 + y6 + y8), minus the average response of all runs with X1
set at `low,' namely (1/4)(y1 + y3 + y5 + y7). That is,

c1 = (1/4) (y2 + y4 + y6 + y8) - (1/4)(y1 + y3 + y5 + y7) or
c1 = (1/4)(63+57+51+53 ) - (1/4)(33+41+57+59) = 8.5

Can we
estimate X1
main effect
with four
runs?

Suppose, however, that we only have enough resources to do four
runs. Is it still possible to estimate the main effect for X1? Or any other
main effect? The answer is yes, and there are even different choices of
the four runs that will accomplish this.

5.3.3.4.1. A 23-1 design (half of a 23)
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Example of
computing the
main effects
using only
four runs

For example, suppose we select only the four light (unshaded) corners
of the design cube. Using these four runs (1, 4, 6 and 7), we can still
compute c1 as follows:

c1 = (1/2) (y4 + y6) - (1/2) (y1 + y7) or
c1 = (1/2) (57+51) - (1/2) (33+59) = 8.

Simarly, we would compute c2, the effect due to X2, as

c2 = (1/2) (y4 + y7) - (1/2) (y1 + y6) or
c2 = (1/2) (57+59) - (1/2) (33+51) = 16.

Finally, the computation of c3 for the effect due to X3 would be

c3 = (1/2) (y6 + y7) - (1/2) (y1 + y4) or
c3 = (1/2) (51+59) - (1/2) (33+57) = 10.

Alternative
runs for
computing
main effects

We could also have used the four dark (shaded) corners of the design
cube for our runs and obtained similiar, but slightly different,
estimates for the main effects. In either case, we would have used half
the number of runs that the full factorial requires. The half fraction we
used is a new design written as 23-1. Note that 23-1 = 23/2 = 22 = 4,
which is the number of runs in this half-fraction design. In the next
section, a general method for choosing fractions that "work" will be
discussed.

Example of
how
fractional
factorial
experiments
often arise in
industry

Example: An engineering experiment calls for running three factors,
namely Pressure, Table speed, and Down force, each at a `high' and a
`low' setting, on a production tool to determine which has the greatest
effect on product uniformity. Interaction effects are considered
negligible, but uniformity measurement error requires that at least two
separate runs (replications) be made at each process setting. In
addition, several `standard setting' runs (centerpoint runs) need to be
made at regular intervals during the experiment to monitor for process
drift. As experimental time and material are limited, no more than 15
runs can be planned.

A full factorial 23 design, replicated twice, calls for 8x2 = 16 runs,
even without centerpoint runs, so this is not an option. However a 23-1

design replicated twice requires only 4x2 = 8 runs, and then we would
have 15-8 = 7 spare runs: 3 to 5 of these spare runs can be used for
centerpoint runs and the rest saved for backup in case something goes
wrong with any run. As long as we are confident that the interactions
are negligbly small (compared to the main effects), and as long as
complete replication is required, then the above replicated 23-1

fractional factorial design (with center points) is a very reasonable

5.3.3.4.1. A 23-1 design (half of a 23)
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choice.

On the other hand, if interactions are potentially large (and if the
replication required could be set aside), then the usual 23 full factorial
design (with center points) would serve as a good design.

5.3.3.4.1. A 23-1 design (half of a 23)
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.2.Constructing the 23-1 half-fraction
design

Construction
of a 23-1 half
fraction
design by
staring with
a 22 full
factorial
design

First note that, mathematically, 23-1 = 22. This gives us the first step,
which is to start with a regular 22 full factorial design. That is, we start
with the following design table.

TABLE 3.12  A Standard Order
22 Full Factorial Design Table

 X1 X2
1 -1 -1
2 +1 -1
3 -1 +1
4 +1 +1

Assign the
third factor
to the
interaction
column of a
22 design

This design has four runs, the right number for a half-fraction of a 23,
but there is no column for factor X3. We need to add a third column to
take care of this, and we do it by adding the X1*X2 interaction column.
This column is, as you will recall from full factorial designs,
constructed by multiplying the row entry for X1 with that of X2 to
obtain the row entry for X1*X2.

TABLE 3.13  A 22 Design Table
Augmented with the X1*X2
Interaction Column `X1*X2'

 X1 X2 X1*X2
1 -1 -1 +1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 +1

5.3.3.4.2. Constructing the 23-1 half-fraction design
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Design table
with X3 set
to X1*X2

We may now substitute `X3' in place of `X1*X2' in this table.

TABLE 3.15  A 23-1 Design Table
with Column X3 set to X1*X2

 X1 X2 X3
1 -1 -1 +1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 +1

Design table
with X3 set
to -X1*X2

Note that the rows of Table 3.14 give the dark-shaded corners of the
design in Figure 3.4. If we had set X3 = -X1*X2 as the rule for
generating the third column of our 23-1 design, we would have obtained:

TABLE 3.15  A 23-1 Design Table
with Column X3 set to - X1*X2

 X1 X2 X3
1 -1 -1 -1
2 +1 -1 +1
3 -1 +1 +1
4 +1 +1 -1

Main effect
estimates
from
fractional
factorial not
as good as
full factorial

This design gives the light-shaded corners of the box of Figure 3.4. Both
23-1 designs that we have generated are equally good, and both save half
the number of runs over the original 23 full factorial design. If c1, c2,
and c3 are our estimates of the main effects for the factors X1, X2, X3
(i.e., the difference in the response due to going from "low" to "high"
for an effect), then the precision of the estimates c1, c2, and c3 are not
quite as good as for the full 8-run factorial because we only have four
observations to construct the averages instead of eight; this is one price
we have to pay for using fewer runs.

Example Example: For the `Pressure (P), Table speed (T), and Down force (D)'
design situation of the previous example, here's a replicated 23-1 in
randomized run order, with five centerpoint runs (`000') interspersed
among the runs. This design table was constructed using the technique
discussed above, with D = P*T.

5.3.3.4.2. Constructing the 23-1 half-fraction design

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3342.htm (2 of 3) [7/1/2003 4:15:49 PM]



Design table
for the
example

TABLE 3.16  A 23-1 Design Replicated Twice,
with Five Centerpoint Runs Added

 Pattern P T D
Center
Point

1 000 0 0 0 1
2 +-- +1 -1 -1 0
3 -+- -1 +1 -1 0
4 000 0 0 0 1
5 +++ +1 +1 +1 0
6 --+ -1 -1 +1 0
7 000 0 0 0 1
8 +-- +1 -1 -1 0
9 --+ -1 -1 +1 0
10 000 0 0 0 1
11 +++ +1 +1 +1 0
12 -+- -1 +1 -1 0
13 000 0 0 0 1

5.3.3.4.2. Constructing the 23-1 half-fraction design
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.3.Confounding (also called aliasing)

Confounding
means we
have lost the
ability to
estimate
some effects
and/or
interactions

One price we pay for using the design table column X1*X2 to obtain
column X3 in Table 3.14 is, clearly, our inability to obtain an estimate of
the interaction effect for X1*X2 (i.e., c12) that is separate from an estimate
of the main effect for X3. In other words, we have confounded the main
effect estimate for factor X3 (i.e., c3) with the estimate of the interaction
effect for X1 and X2 (i.e., with c12). The whole issue of confounding is
fundamental to the construction of fractional factorial designs, and we will
spend time discussing it below.

Sparsity of
effects
assumption

In using the 23-1 design, we also assume that c12 is small compared to c3;
this is called a `sparsity of effects' assumption. Our computation of c3 is in
fact a computation of c3 + c12. If the desired effects are only confounded
with non-significant interactions, then we are OK.

A Notation and Method for Generating Confounding or Aliasing

A short way
of writing
factor column
multiplication

A short way of writing `X3 = X1*X2' (understanding that we are talking
about multiplying columns of the design table together) is: `3 = 12'
(similarly 3 = -12 refers to X3 = -X1*X2). Note that `12' refers to column
multiplication of the kind we are using to construct the fractional design
and any column multiplied by itself gives the identity column of all 1's.

Next we multiply both sides of 3=12 by 3 and obtain 33=123, or I=123
since 33=I (or a column of all 1's). Playing around with this "algebra", we
see that 2I=2123, or 2=2123, or 2=1223, or 2=13 (since 2I=2, 22=I, and
1I3=13). Similarly, 1=23.

5.3.3.4.3. Confounding (also called aliasing)
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Definition of
"design
generator" or
"generating
relation" and
"defining
relation"

I=123 is called a design generator or a generating relation for this
23-1design (the dark-shaded corners of Figure 3.4). Since there is only one
design generator for this design, it is also the defining relation for the
design. Equally, I=-123 is the design generator (and defining relation) for
the light-shaded corners of Figure 3.4. We call I=123 the defining relation
for the 23-1 design because with it we can generate (by "multiplication") the
complete confounding pattern for the design. That is, given I=123, we can
generate the set of {1=23, 2=13, 3=12, I=123}, which is the complete set of
aliases, as they are called, for this 23-1 fractional factorial design. With
I=123, we can easily generate all the columns of the half-fraction design
23-1.

Principal
fraction

Note: We can replace any design generator by its negative counterpart and
have an equivalent, but different fractional design. The fraction generated
by positive design generators is sometimes called the principal fraction.

All main
effects of 23-1

design
confounded
with
two-factor
interactions

The confounding pattern described by 1=23, 2=13, and 3=12 tells us that
all the main effects of the 23-1 design are confounded with two-factor
interactions. That is the price we pay for using this fractional design. Other
fractional designs have different confounding patterns; for example, in the
typical quarter-fraction of a 26 design, i.e., in a 26-2 design, main effects are
confounded with three-factor interactions (e.g., 5=123) and so on. In the
case of 5=123, we can also readily see that 15=23 (etc.), which alerts us to
the fact that certain two-factor interactions of a 26-2 are confounded with
other two-factor interactions.

A useful
summary
diagram for a
fractional
factorial
design

Summary: A convenient summary diagram of the discussion so far about
the 23-1 design is as follows:

FIGURE 3.5  Essential Elements of a 23-1 Design

5.3.3.4.3. Confounding (also called aliasing)
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The next section will add one more item to the above box, and then we will
be able to select the right two-level fractional factorial design for a wide
range of experimental tasks.

5.3.3.4.3. Confounding (also called aliasing)
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.4.Fractional factorial design
specifications and design
resolution

Generating
relation and
diagram for
the 28-3

fractional
factorial
design

We considered the 23-1 design in the previous section and saw that its
generator written in "I = ... " form is {I = +123}. Next we look at a
one-eighth fraction of a 28 design, namely the 28-3 fractional factorial
design. Using a diagram similar to Figure 3.5, we have the following:

FIGURE 3.6  Specifications for a 28-3 Design

28-3 design
has 32 runs

Figure 3.6 tells us that a 28-3 design has 32 runs, not including
centerpoint runs, and eight factors. There are three generators since this
is a 1/8 = 2-3 fraction (in general, a 2k-p fractional factorial needs p
generators which define the settings for p additional factor columns to
be added to the 2k-p full factorial design columns - see the following
detailed description for the 28-3 design).

5.3.3.4.4. Fractional factorial design specifications and design resolution
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How to Construct a Fractional Factorial Design From the
Specification

Rule for
constructing
a fractional
factorial
design

In order to construct the design, we do the following:

Write down a full factorial design in standard order for k-p
factors (8-3 = 5 factors for the example above). In the
specification above we start with a 25 full factorial design. Such a
design has 25 = 32 rows.

1.  

Add a sixth column to the design table for factor 6, using 6 = 345
(or 6 = -345) to manufacture it (i.e., create the new column by
multiplying the indicated old columns together).

2.  

Do likewise for factor 7 and for factor 8, using the appropriate
design generators given in Figure 3.6.

3.  

The resultant design matrix gives the 32 trial runs for an 8-factor
fractional factorial design. (When actually running the
experiment, we would of course randomize the run order.

4.  

Design
generators

We note further that the design generators, written in `I = ...' form, for
the principal 28-3 fractional factorial design are:

{ I = + 3456; I = + 12457; I = +12358 }.

These design generators result from multiplying the "6 = 345" generator
by "6" to obtain "I = 3456" and so on for the other two generqators.

"Defining
relation" for
a fractional
factorial
design

The total collection of design generators for a factorial design, including
all new generators that can be formed as products of these generators,
is called a defining relation. There are seven "words", or strings of
numbers, in the defining relation for the 28-3 design, starting with the
original three generators and adding all the new "words" that can be
formed by multiplying together any two or three of these original three
words. These seven turn out to be I = 3456 = 12457 = 12358 = 12367 =
12468 = 3478 = 5678. In general, there will be (2p -1) words in the
defining relation for a 2k-p fractional factorial.

Definition of
"Resolution"

The length of the shortest word in the defining relation is called the
resolution of the design. Resolution describes the degree to which
estimated main effects are aliased (or confounded) with estimated
2-level interactions, 3-level interactions, etc.

5.3.3.4.4. Fractional factorial design specifications and design resolution
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Notation for
resolution
(Roman
numerals)

The length of the shortest word in the defining relation for the 28-3

design is four. This is written in Roman numeral script, and subscripted
as . Note that the 23-1 design has only one word, "I = 123" (or "I =
-123"), in its defining relation since there is only one design generator,
and so this fractional factorial design has resolution three; that is, we
may write .

Diagram for
a 28-3 design
showing
resolution

Now Figure 3.6 may be completed by writing it as:

FIGURE 3.7  Specifications for a 28-3, Showing Resolution IV

Resolution
and
confounding

The design resolution tells us how badly the design is confounded.
Previously, in the 23-1 design, we saw that the main effects were
confounded with two-factor interactions. However, main effects were
not confounded with other main effects. So, at worst, we have 3=12, or
2=13, etc., but we do not have 1=2, etc. In fact, a resolution II design
would be pretty useless for any purpose whatsoever!

Similarly, in a resolution IV design, main effects are confounded with at
worst three-factor interactions. We can see, in Figure 3.7, that 6=345.
We also see that 36=45, 34=56, etc. (i.e., some two-factor interactions
are confounded with certain other two-factor interactions) etc.; but we
never see anything like 2=13, or 5=34, (i.e., main effects confounded
with two-factor interactions).

5.3.3.4.4. Fractional factorial design specifications and design resolution
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The
complete
first-order
interaction
confounding
for the given
28-3 design

The complete confounding pattern, for confounding of up to two-factor
interactions, arising from the design given in Figure 3.7 is

34 = 56 = 78
35 = 46
36 = 45
37 = 48
38 = 47
57 = 68
58 = 67

All of these relations can be easily verified by multiplying the indicated
two-factor interactions by the generators. For example, to verify that
38= 47, multiply both sides of 8=1235 by 3 to get 38=125. Then,
multiply 7=1245 by 4 to get 47=125. From that it follows that 38=47. 

One or two
factors
suspected of
possibly
having
significant
first-order
interactions
can be
assigned in
such a way
as to avoid
having them
aliased

For this  fractional factorial design, 15 two-factor interactions are
aliased (confounded) in pairs or in a group of three. The remaining 28 -
15 = 13 two-factor interactions are only aliased with higher-order
interactions (which are generally assumed to be negligible). This is
verified by noting that factors "1" and "2" never appear in a length-4
word in the defining relation. So, all 13 interactions involving "1" and
"2" are clear of aliasing with any other two factor interaction.

If one or two factors are suspected of possibly having significant
first-order interactions, they can be assigned in such a way as to avoid
having them aliased.

Higher
resoulution
designs have
less severe
confounding,
but require
more runs

A resolution IV design is "better" than a resolution III design because
we have less-severe confounding pattern in the `IV' than in the `III'
situation; higher-order interactions are less likely to be significant than
low-order interactions.

A higher-resolution design for the same number of factors will,
however, require more runs and so it is `worse' than a lower order
design in that sense.

5.3.3.4.4. Fractional factorial design specifications and design resolution
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Resolution V
designs for 8
factors

Similarly, with a resolution V design, main effects would be
confounded with four-factor (and possibly higher-order) interactions,
and two-factor interactions would be confounded with certain
three-factor interactions. To obtain a resolution V design for 8 factors
requires more runs than the 28-3 design. One option, if estimating all
main effects and two-factor interactions is a requirement, is a 
design. However, a 48-run alternative (John's 3/4 fractional factorial) is
also available.

There are
many
choices of
fractional
factorial
designs -
some may
have the
same
number of
runs and
resolution,
but different
aliasing
patterns.

Note: There are other  fractional designs that can be derived
starting with different choices of design generators for the "6", "7" and
"8" factor columns. However, they are either equivalent (in terms of the
number of words of length of length of four) to the fraction with
generators 6 = 345, 7 = 1245, 8 = 1235 (obtained by relabeling the
factors), or they are inferior to the fraction given because their defining
relation contains more words of length four (and therefore more
confounded two-factor interactions). For example, the  design with
generators 6 = 12345, 7 = 135, and 8 = 245 has five length-four words
in the defining relation (the defining relation is I = 123456 = 1357 =
2458 = 2467 = 1368 = 123478 = 5678). As a result, this design would
confound more two factor-interactions (23 out of 28 possible two-factor
interactions are confounded, leaving only "12", "14", "23", "27" and
"34" as estimable two-factor interactions).

Diagram of
an
alternative
way for
generating
the 28-3

design

As an example of an equivalent "best"  fractional factorial design,
obtained by "relabeling", consider the design specified in Figure 3.8.

FIGURE 3.8  Another Way of Generating the 28-3 Design

5.3.3.4.4. Fractional factorial design specifications and design resolution
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This design is equivalent to the design specified in Figure 3.7 after
relabeling the factors as follows: 1 becomes 5, 2 becomes 8, 3 becomes
1, 4 becomes 2, 5 becomes 3, 6 remains 6, 7 becomes 4 and 8 becomes
7.

Minimum
aberration

A table given later in this chapter gives a collection of useful fractional
factorial designs that, for a given k and p, maximize the possible
resolution and minimize the number of short words in the defining
relation (which minimizes two-factor aliasing). The term for this is
"minimum aberration".

Design Resolution Summary

Commonly
used design
Resolutions

The meaning of the most prevalent resolution levels is as follows:

Resolution III Designs

Main effects are confounded (aliased) with two-factor interactions.

Resolution IV Designs

No main effects are aliased with two-factor interactions, but two-factor
interactions are aliased with each other.

Resolution V Designs

No main effect or two-factor interaction is aliased with any other main
effect or two-factor interaction, but two-factor interactions are aliased
with three-factor interactions.

5.3.3.4.4. Fractional factorial design specifications and design resolution
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.5.Use of fractional factorial designs

Use
low-resolution
designs for
screening among
main effects and
use
higher-resolution
designs when
interaction effects
and response
surfaces need to
be investigated

The basic purpose of a fractional factorial design is to
economically investigate cause-and-effect relationships of
significance in a given experimental setting. This does not differ in
essence from the purpose of any experimental design. However,
because we are able to choose fractions of a full design, and hence
be more economical, we also have to be aware that different
factorial designs serve different purposes.

Broadly speaking, with designs of resolution three, and sometimes
four, we seek to screen out the few important main effects from the
many less important others. For this reason, these designs are often
termed main effects designs, or screening designs.

On the other hand, designs of resolution five, and higher, are used
for focusing on more than just main effects in an experimental
situation. These designs allow us to estimate interaction effects and
such designs are easily augmented to complete a second-order
design - a design that permits estimation of a full second-order
(quadratic) model.

Different
purposes for
screening/RSM
designs

Within the screening/RSM strategy of design, there are a number
of functional purposes for which designs are used. For example, an
experiment might be designed to determine how to make a product
better or a process more robust against the influence of external
and non-controllable influences such as the weather. Experiments
might be designed to troubleshoot a process, to determine
bottlenecks, or to specify which component(s) of a product are
most in need of improvement. Experiments might also be designed
to optimize yield, or to minimize defect levels, or to move a
process away from an unstable operating zone. All these aims and
purposes can be achieved using fractional factorial designs and
their appropriate design enhancements.

5.3.3.4.5. Use of fractional factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.6.Screening designs

Screening
designs are an
efficient way to
identify
significant main
effects

The term `Screening Design' refers to an experimental plan that is
intended to find the few significant factors from a list of many
potential ones. Alternatively, we refer to a design as a screening
design if its primary purpose is to identify significant main effects,
rather than interaction effects, the latter being assumed an order of
magnitude less important.

Use screening
designs when you
have many
factors to
consider

Even when the experimental goal is to eventually fit a response
surface model (an RSM analysis), the first experiment should be a
screening design when there are many factors to consider.

Screening
designs are
usually
resolution III or
IV

Screening designs are typically of resolution III. The reason is that
resolution III designs permit one to explore the effects of many
factors with an efficient number of runs.

Sometimes designs of resolution IV are also used for screening
designs. In these designs, main effects are confounded with, at
worst, three-factor interactions. This is better from the confounding
viewpoint, but the designs require more runs than a resolution III
design.

Plackett-Burman
designs

Another common family of screening designs is the
Plackett-Burman set of designs, so named after its inventors. These
designs are of resolution III and will be described later.

Economical
plans for
determing
significant main
effects

In short, screening designs are economical experimental plans that
focus on determining the relative significance of many main
effects.

5.3.3.4.6. Screening designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.7.Summary tables of useful
fractional factorial designs

Useful
fractional
factorial
designs for
up to 10
factors are
summarized
here

There are very useful summaries of two-level fractional factorial designs
for up to 11 factors, originally published in the book Statistics for
Experimenters by G.E.P. Box, W.G. Hunter, and J.S. Hunter (New
York, John Wiley & Sons, 1978). and also given in the book Design and
Analysis of Experiments, 5th edition by Douglas C. Montgomery (New
York, John Wiley & Sons, 2000).

Generator
column
notation can
use either
numbers or
letters for
the factor
columns

They differ in the notation for the design generators. Box, Hunter, and
Hunter use numbers (as we did in our earlier discussion) and
Montgomery uses capital letters according to the following scheme:

Notice the absence of the letter I. This is usually reserved for the
intercept column that is identically 1. As an example of the letter
notation, note that the design generator "6 = 12345" is equivalent to "F =
ABCDE".

5.3.3.4.7. Summary tables of useful fractional factorial designs
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Details of
the design
generators,
the defining
relation, the
confounding
structure,
and the
design
matrix

TABLE 3.17 catalogs these useful fractional factorial designs using the
notation previously described in FIGURE 3.7.

Clicking on the  specification for a given design provides details

(courtesy of Dataplot files) of the design generators, the defining
relation, the confounding structure (as far as main effects and two-level
interactions are concerned), and the design matrix. The notation used
follows our previous labeling of factors with numbers, not letters.

Click on the
design
specification
in the table
below and a
text file with
details
about the
design can
be viewed or
saved

TABLE 3.17  Summary of Useful Fractional Factorial Designs

Number of Factors, k Design Specification Number of Runs  N
   

3 2III
3-1 4

4 2IV
4-1 8

5 2V
5-1 16

5 2III
5-2 8

6 2VI
6-1 32

6 2IV
6-2 16

6 2III
6-3 8

7 2VII
7-1 64

7 2IV
7-2 32

7 2IV
7-3 16

7 2III
7-4 8

8 2VI
8-1 128

8 2V
8-2 64

8 2IV
8-3 32

8 2IV
8-4 16

9 2VI
9-2 128

9 2IV
9-3 64

9 2IV
9-4 32
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9 2III
9-5 16

10 2V
10-3 128

10 2IV
10-4 64

10 2IV
10-5 32

10 2III
10-6 16

11 2V
11-4 128

11 2IV
11-5 64

11 2IV
11-6 32

11 2III
11-7 16

15 2III
15-11 16

31 2III
31-26 32
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.5.Plackett-Burman designs

Plackett-
Burman
designs

In 1946, R.L. Plackett and J.P. Burman published their now famous paper "The Design
of Optimal Multifactorial Experiments" in Biometrika (vol. 33). This paper described
the construction of very economical designs with the run number a multiple of four
(rather than a power of 2). Plackett-Burman designs are very efficient screening designs
when only main effects are of interest.

These
designs
have run
numbers
that are a
multiple of
4

Plackett-Burman (PB) designs are used for screening experiments because, in a PB
design, main effects are, in general, heavily confounded with two-factor interactions.
The PB design in 12 runs, for example, may be used for an experiment containing up to
11 factors.

12-Run
Plackett-
Burnam
design

TABLE 3.18  Plackett-Burman Design in 12 Runs for up to 11 Factors

 Pattern X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
1 +++++++++++ +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
2 -+-+++---+- -1 +1 -1 +1 +1 +1 -1 -1 -1 +1 -1
3 --+-+++---+ -1 -1 +1 -1 +1 +1 +1 -1 -1 -1 +1
4 +--+-+++--- +1 -1 -1 +1 -1 +1 +1 +1 -1 -1 -1
5 -+--+-+++-- -1 +1 -1 -1 +1 -1 +1 +1 +1 -1 -1
6 --+--+-+++- -1 -1 +1 -1 -1 +1 -1 +1 +1 +1 -1
7 ---+--+-+++ -1 -1 -1 +1 -1 -1 +1 -1 +1 +1 +1
8 +---+--+-++ +1 -1 -1 -1 +1 -1 -1 +1 -1 +1 +1
9 ++---+--+-+ +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 +1

10 +++---+--+- +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1
11 -+++---+--+ -1 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1
12 +-+++---+-- +1 -1 +1 +1 +1 -1 -1 -1 +1 -1 -1
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Saturated
Main Effect
designs

PB designs also exist for 20-run, 24-run, and 28-run (and higher) designs. With a 20-run
design you can run a screening experiment for up to 19 factors, up to 23 factors in a
24-run design, and up to 27 factors in a 28-run design. These Resolution III designs are
known as Saturated Main Effect designs because all degrees of freedom are utilized to
estimate main effects. The designs for 20 and 24 runs are shown below.

20-Run
Plackett-
Burnam
design

TABLE 3.19  A 20-Run Plackett-Burman Design

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19
1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
2 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1
3 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1
4 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1
5 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1
6 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1
7 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1
8 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1
9 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1

10 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1
11 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1
12 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1
13 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1
14 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1
15 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1
16 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1
17 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1
18 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1
19 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1
20 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1

24-Run
Plackett-
Burnam
design

TABLE 3.20 A 24-Run Plackett-Burman Design
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1

3 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1

4 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1

5 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1

6 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1

7 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1

8 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1

9 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1

10 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1

11 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1

12 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1

13 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1
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14 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1

15 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1

16 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1

17 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1

18 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1

19 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1

20 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1

21 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1

22 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1

23 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1

24 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1

No defining
relation

These designs do not have a defining relation since interactions are not identically equal

to main effects. With the  designs, a main effect column Xi is either orthogonal to

XiXj or identical to plus or minus XiXj. For Plackett-Burman designs, the two-factor
interaction column XiXj is correlated with every Xk (for k not equal to i or j).

Economical
for
detecting
large main
effects

However, these designs are very useful for economically detecting large main effects,
assuming all interactions are negligible when compared with the few important main
effects.
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.6.Response surface designs

Response
surface
models may
involve just
main effects
and
interactions
or they may
also have
quadratic
and possibly
cubic terms
to account
for curvature

Earlier, we described the response surface method (RSM) objective. Under
some circumstances, a model involving only main effects and interactions
may be appropriate to describe a response surface when

Analysis of the results revealed no evidence of "pure quadratic"
curvature in the response of interest (i.e., the response at the center
approximately equals the average of the responses at the factorial
runs).

1.  

The design matrix originally used included the limits of the factor
settings available to run the process.

2.  

Equations for
quadratic
and cubic
models

In other circumstances, a complete description of the process behavior might
require a quadratic or cubic model:

Quadratic

Cubic

These are the full models, with all possible terms, rarely would all of the
terms be needed in an application.

5.3.3.6. Response surface designs
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Quadratic
models
almost
always
sufficient for
industrial
applications

If the experimenter has defined factor limits appropriately and/or taken
advantage of all the tools available in multiple regression analysis
(transformations of responses and factors, for example), then finding an
industrial process that requires a third-order model is highly unusual.
Therefore, we will only focus on designs that are useful for fitting quadratic
models. As we will see, these designs often provide lack of fit detection that
will help determine when a higher-order model is needed.

General
quadratic
surface types

Figures 3.9 to 3.12 identify the general quadratic surface types that an
investigator might encounter 
 
 

FIGURE 3.9  A Response
Surface "Peak"

FIGURE 3.10   A Response
Surface "Hillside"

FIGURE 3.11   A Response
Surface "Rising Ridge"

FIGURE 3.12  A Response
Surface "Saddle"

Factor Levels for Higher-Order Designs

5.3.3.6. Response surface designs
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Possible
behaviors of
responses as
functions of
factor
settings

Figures 3.13 through 3.15 illustrate possible behaviors of responses as
functions of factor settings. In each case, assume the value of the response
increases from the bottom of the figure to the top and that the factor settings
increase from left to right.

FIGURE 3.13
Linear Function

FIGURE 3.14
Quadratic Function

FIGURE 3.15
Cubic Function

A two-level
experiment
with center
points can
detect, but
not fit,
quadratic
effects

If a response behaves as in Figure 3.13, the design matrix to quantify that
behavior need only contain factors with two levels -- low and high. This
model is a basic assumption of simple two-level factorial and fractional
factorial designs. If a response behaves as in Figure 3.14, the minimum
number of levels required for a factor to quantify that behavior is three. One
might logically assume that adding center points to a two-level design would
satisfy that requirement, but the arrangement of the treatments in such a
matrix confounds all quadratic effects with each other. While a two-level
design with center points cannot estimate individual pure quadratic effects, it
can detect them effectively.

Three-level
factorial
design

A solution to creating a design matrix that permits the estimation of simple
curvature as shown in Figure 3.14 would be to use a three-level factorial
design. Table 3.21 explores that possibility.

Four-level
factorial
design

Finally, in more complex cases such as illustrated in Figure 3.15, the design
matrix must contain at least four levels of each factor to characterize the
behavior of the response adequately.

5.3.3.6. Response surface designs
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3-level
factorial
designs can
fit quadratic
models but
they require
many runs
when there
are more
than 4 factors

TABLE 3.21 Three-level Factorial Designs

Number
of Factors

Treatment Combinations
3k Factorial

Number of Coefficients
Quadratic Empirical Model

2 9 6
3 27 10
4 81 15
5 243 21
6 729 28

Fractional
factorial
designs
created to
avoid such a
large number
of runs

Two-level factorial designs quickly become too large for practical application
as the number of factors investigated increases. This problem was the
motivation for creating `fractional factorial' designs. Table 3.21 shows that
the number of runs required for a 3k factorial becomes unacceptable even
more quickly than for 2k designs. The last column in Table 3.21 shows the
number of terms present in a quadratic model for each case.

Number of
runs large
even for
modest
number of
factors

With only a modest number of factors, the number of runs is very large, even
an order of magnitude greater than the number of parameters to be estimated
when k isn't small. For example, the absolute minimum number of runs
required to estimate all the terms present in a four-factor quadratic model is
15: the intercept term, 4 main effects, 6 two-factor interactions, and 4
quadratic terms.

The corresponding 3k design for k = 4 requires 81 runs.

Complex
alias
structure and
lack of
rotatability
for 3-level
fractional
factorial
designs

Considering a fractional factorial at three levels is a logical step, given the
success of fractional designs when applied to two-level designs.
Unfortunately, the alias structure for the three-level fractional factorial
designs is considerably more complex and harder to define than in the
two-level case.

Additionally, the three-level factorial designs suffer a major flaw in their lack
of `rotatability.'

Rotatability of Designs

5.3.3.6. Response surface designs
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"Rotatability"
is a desirable
property not
present in
3-level
factorial
designs

In a rotatable design, the variance of the predicted values of y is a function of
the distance of a point from the center of the design and is not a function of
the direction the point lies from the center. Before a study begins, little or no
knowledge may exist about the region that contains the optimum response.
Therefore, the experimental design matrix should not bias an investigation in
any direction.

Contours of
variance of
predicted
values are
concentric
circles

In a rotatable design, the contours associated with the variance of the
predicted values are concentric circles. Figures 3.16 and 3.17 (adapted from
Box and Draper, `Empirical Model Building and Response Surfaces,' page
485) illustrate a three-dimensional plot and contour plot, respectively, of the
`information function' associated with a 32 design.

Information
function

The information function is:

with V denoting the variance (of the predicted value ).

Each figure clearly shows that the information content of the design is not
only a function of the distance from the center of the design space, but also a
function of direction.

Graphs of the
information
function for a
rotatable
quadratic
design

Figures 3.18 and 3.19 are the corresponding graphs of the information
function for a rotatable quadratic design. In each of these figures, the value of
the information function depends only on the distance of a point from the
center of the space. 

5.3.3.6. Response surface designs
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FIGURE 3.16 
Three-Dimensional
Illustration for the

Information Function of a
32 Design

FIGURE 3.17 
Contour Map of the Information Function

for a 32 Design

FIGURE 3.18 
Three-Dimensional
Illustration of the

Information Function for a
Rotatable Quadratic Design

for Two Factors

FIGURE 3.19  Contour Map of the
Information Function for a Rotatable

Quadratic Design for Two Factors

Classical Quadratic Designs

Central
composite
and
Box-Behnken
designs

Introduced during the 1950's, classical quadratic designs fall into two broad
categories: Box-Wilson central composite designs and Box-Behnken designs.
The next sections describe these design classes and their properties.
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.6. Response surface designs

5.3.3.6.1.Central Composite Designs (CCD)

Box-Wilson Central Composite Designs

CCD designs
start with a
factorial or
fractional
factorial
design (with
center points)
and add
"star" points
to estimate
curvature

A Box-Wilson Central Composite Design, commonly called `a central
composite design,' contains an imbedded factorial or fractional
factorial design with center points that is augmented with a group of
`star points' that allow estimation of curvature. If the distance from the
center of the design space to a factorial point is ±1 unit for each factor,
the distance from the center of the design space to a star point is ±
with | | > 1. The precise value of  depends on certain properties
desired for the design and on the number of factors involved.

Similarly, the number of centerpoint runs the design is to contain also
depends on certain properties required for the design.

Diagram of
central
composite
design
generation for
two factors

FIGURE 3.20  Generation of a Central Composite Design for Two
Factors

5.3.3.6.1. Central Composite Designs (CCD)
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A CCD design
with k factors
has 2k star
points

A central composite design always contains twice as many star points
as there are factors in the design. The star points represent new
extreme values (low and high) for each factor in the design. Table 3.22
summarizes the properties of the three varieties of central composite
designs. Figure 3.21 illustrates the relationships among these varieties.

Description of
3 types of
CCD designs,
which depend
on where the
star points
are placed

TABLE 3.22   Central Composite Designs

Central Composite
     Design Type Terminology Comments

Circumscribed CCC

CCC designs are the original
form of the central composite
design. The star points are at
some distance  from the center
based on the properties desired
for the design and the number of
factors in the design. The star
points establish new extremes for
the low and high settings for all
factors. Figure 5 illustrates a
CCC design. These designs have
circular, spherical, or
hyperspherical symmetry and
require 5 levels for each factor.
Augmenting an existing factorial
or resolution V fractional
factorial design with star points
can produce this design.

 Inscribed CCI

For those situations in which the
limits specified for factor settings
are truly limits, the CCI design
uses the factor settings as the star
points and creates a factorial or
fractional factorial design within
those limits (in other words, a
CCI design is a scaled down
CCC design with each factor
level of the CCC design divided
by  to generate the CCI design).
This design also requires 5 levels
of each factor.

5.3.3.6.1. Central Composite Designs (CCD)
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 Face Centered CCF

In this design the star points are
at the center of each face of the
factorial space, so  = ± 1. This
variety requires 3 levels of each
factor. Augmenting an existing
factorial or resolution V design
with appropriate star points can
also produce this design.

Pictorial
representation
of where the
star points
are placed for
the 3 types of
CCD designs

FIGURE 3.21  Comparison of the Three Types of Central
Composite Designs

5.3.3.6.1. Central Composite Designs (CCD)
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Comparison
of the 3
central
composite
designs

The diagrams in Figure 3.21 illustrate the three types of central
composite designs for two factors. Note that the CCC explores the
largest process space and the CCI explores the smallest process space.
Both the CCC and CCI are rotatable designs, but the CCF is not. In the
CCC design, the design points describe a circle circumscribed about
the factorial square. For three factors, the CCC design points describe
a sphere around the factorial cube.

Determining  in Central Composite Designs

The value of
 is chosen to

maintain
rotatability

To maintain rotatability, the value of  depends on the number of
experimental runs in the factorial portion of the central composite
design:

If the factorial is a full factorial, then

However, the factorial portion can also be a fractional factorial design
of resolution V.

Table 3.23 illustrates some typical values of  as a function of the
number of factors.

Values of 
depending on
the number of
factors in the
factorial part
of the design

TABLE 3.23  Determining  for Rotatability
Number of

Factors
Factorial
Portion

Scaled Value for 
Relative to ±1

2 22 22/4 = 1.414
3 23 23/4 = 1.682
4 24 24/4 = 2.000
5 25-1 24/4 = 2.000
5 25 25/4 = 2.378
6 26-1 25/4 = 2.378
6 26 26/4 = 2.828
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Orthogonal
blocking

The value of  also depends on whether or not the design is
orthogonally blocked. That is, the question is whether or not the
design is divided into blocks such that the block effects do not affect
the estimates of the coefficients in the 2nd order model.

Example of
both
rotatability
and
orthogonal
blocking for
two factors

Under some circumstances, the value of  allows simultaneous
rotatability and orthogonality. One such example for k = 2 is shown
below:

BLOCK X1 X2
   

1 -1 -1
1 1 -1
1 -1 1
1 1 1
1 0 0
1 0 0
2 -1.414 0
2 1.414 0
2 0 -1.414
2 0 1.414
2 0 0
2 0 0

Additional
central
composite
designs

Examples of other central composite designs will be given after
Box-Behnken designs are described.
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.6. Response surface designs

5.3.3.6.2.Box-Behnken designs

An alternate
choice for
fitting
quadratic
models that
requires 3
levels of
each factor
and is
rotatable (or
"nearly"
rotatable)

The Box-Behnken design is an independent quadratic design in that it
does not contain an embedded factorial or fractional factorial design. In
this design the treatment combinations are at the midpoints of edges of
the process space and at the center. These designs are rotatable (or near
rotatable) and require 3 levels of each factor. The designs have limited
capability for orthogonal blocking compared to the central composite
designs.

Figure 3.22 illustrates a Box-Behnken design for three factors.

Box-Behnken
design for 3
factors

FIGURE 3.22  A Box-Behnken Design for Three Factors

5.3.3.6.2. Box-Behnken designs
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Geometry of
the design

The geometry of this design suggests a sphere within the process space
such that the surface of the sphere protrudes through each face with the
surface of the sphere tangential to the midpoint of each edge of the
space.

Examples of Box-Behnken designs are given on the next page.

5.3.3.6.2. Box-Behnken designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.6. Response surface designs

5.3.3.6.3.Comparisons of response surface
designs

Choosing a Response Surface Design

Various
CCD designs
and
Box-Behnken
designs are
compared
and their
properties
discussed

Table 3.24 contrasts the structures of four common quadratic designs one might
use when investigating three factors. The table combines CCC and CCI designs
because they are structurally identical.

For three factors, the Box-Behnken design offers some advantage in requiring a
fewer number of runs. For 4 or more factors, this advantage disappears.

Structural
comparisons
of CCC
(CCI), CCF,
and
Box-Behnken
designs for
three factors

TABLE 3.24  Structural Comparisons of CCC (CCI), CCF, and
Box-Behnken Designs for Three Factors

CCC (CCI) CCF Box-Behnken
Rep X1 X2 X3 Rep X1 X2 X3 Rep X1 X2 X3

1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
1 +1 -1 -1 1 +1 -1 -1 1 +1 -1 0
1 -1 +1 -1 1 -1 +1 -1 1 -1 +1 0
1 +1 +1 -1 1 +1 +1 -1 1 +1 +1 0
1 -1 -1 +1 1 -1 -1 +1 1 -1 0 -1
1 +1 -1 +1 1 +1 -1 +1 1 +1 0 -1
1 -1 +1 +1 1 -1 +1 +1 1 -1 0 +1
1 +1 +1 +1 1 +1 +1 +1 1 +1 0 +1
1 -1.682 0 0 1 -1 0 0 1 0 -1 -1
1 1.682 0 0 1 +1 0 0 1 0 +1 -1
1 0 -1.682 0 1 0 -1 0 1 0 -1 +1
1 0 1.682 0 1 0 +1 0 1 0 +1 +1

5.3.3.6.3. Comparisons of response surface designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3363.htm (1 of 5) [7/1/2003 4:15:57 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


1 0 0 -1.682 1 0 0 -1 3 0 0 0
1 0 0 1.682 1 0 0 +1     
6 0 0 0 6 0 0 0     

Total Runs = 20 Total Runs = 20 Total Runs = 15

Factor
settings for
CCC and
CCI three
factor
designs

Table 3.25 illustrates the factor settings required for a central composite
circumscribed (CCC) design and for a central composite inscribed (CCI) design
(standard order), assuming three factors, each with low and high settings of 10
and 20, respectively. Because the CCC design generates new extremes for all
factors, the investigator must inspect any worksheet generated for such a design
to make certain that the factor settings called for are reasonable.

In Table 3.25, treatments 1 to 8 in each case are the factorial points in the design;
treatments 9 to 14 are the star points; and 15 to 20 are the system-recommended
center points. Notice in the CCC design how the low and high values of each
factor have been extended to create the star points.  In the CCI design, the
specified low and high values become the star points, and the system computes
appropriate settings for the factorial part of the design inside those boundaries.

TABLE 3.25  Factor Settings for CCC and CCI Designs for Three
Factors

Central Composite
Circumscribed CCC

 Central Composite
Inscribed CCI

Sequence
Number X1 X2 X3  

Sequence
Number X1 X2 X3

1 10 10 10  1 12 12 12
2 20 10 10  2 18 12 12
3 10 20 10  3 12 18 12
4 20 20 10  4 18 18 12
5 10 10 20  5 12 12 18
6 20 10 20  6 18 12 18
7 10 20 20  7 12 12 18
8 20 20 20  8 18 18 18
9 6.6 15 15 * 9 10 15 15

10 23.4 15 15 * 10 20 15 15
11 15 6.6 15 * 11 15 10 15
12 15 23.4 15 * 12 15 20 15
13 15 15 6.6 * 13 15 15 10
14 15 15 23.4 * 14 15 15 20
15 15 15 15  15 15 15 15
16 15 15 15  16 15 15 15
17 15 15 15  17 15 15 15

5.3.3.6.3. Comparisons of response surface designs
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18 15 15 15  18 15 15 15
19 15 15 15  19 15 15 15
20 15 15 15  20 15 15 15

* are star points

Factor
settings for
CCF and
Box-Behnken
three factor
designs

Table 3.26 illustrates the factor settings for the corresponding central composite
face-centered (CCF) and Box-Behnken designs. Note that each of these designs
provides three levels for each factor and that the Box-Behnken design requires
fewer runs in the three-factor case.

TABLE 3.26  Factor Settings for CCF and Box-Behnken Designs for
Three Factors

Central Composite
Face-Centered CCC

 Box-Behnken

Sequence
Number X1 X2 X3  

Sequence
Number X1 X2 X3

1 10 10 10  1 10 10 10
2 20 10 10  2 20 10 15
3 10 20 10  3 10 20 15
4 20 20 10  4 20 20 15
5 10 10 20  5 10 15 10
6 20 10 20  6 20 15 10
7 10 20 20  7 10 15 20
8 20 20 20  8 20 15 20
9 10 15 15 * 9 15 10 10

10 20 15 15 * 10 15 20 10
11 15 10 15 * 11 15 10 20
12 15 20 15 * 12 15 20 20
13 15 15 10 * 13 15 15 15
14 15 15 20 * 14 15 15 15
15 15 15 15  15 15 15 15
16 15 15 15      
17 15 15 15      
18 15 15 15      
19 15 15 15      
20 15 15 15      

* are star points for the CCC

5.3.3.6.3. Comparisons of response surface designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3363.htm (3 of 5) [7/1/2003 4:15:57 PM]



Properties of
classical
response
surface
designs

Table 3.27 summarizes properties of the classical quadratic designs. Use this table
for broad guidelines when attempting to choose from among available designs.

TABLE 3.27  Summary of Properties of Classical Response Surface Designs

Design Type Comment

CCC

CCC designs provide high quality predictions over the entire
design space, but require factor settings outside the range of the
factors in the factorial part. Note: When the possibility of running
a CCC design is recognized before starting a factorial experiment,
factor spacings can be reduced to ensure that ±  for each coded
factor corresponds to feasible (reasonable) levels.

Requires 5 levels for each factor.

CCI

CCI designs use only points within the factor ranges originally
specified, but do not provide the same high quality prediction
over the entire space compared to the CCC.

Requires 5 levels of each factor.

CCF

CCF designs provide relatively high quality predictions over the
entire design space and do not require using points outside the
original factor range. However, they give poor precision for
estimating pure quadratic coefficients.

Requires 3 levels for each factor.

Box-Behnken

These designs require fewer treatment combinations than a
central composite design in cases involving 3 or 4 factors.

The Box-Behnken design is rotatable (or nearly so) but it contains
regions of poor prediction quality like the CCI. Its "missing
corners" may be useful when the experimenter should avoid
combined factor extremes. This property prevents a potential loss
of data in those cases.

Requires 3 levels for each factor.

5.3.3.6.3. Comparisons of response surface designs
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Number of
runs
required by
central
composite
and
Box-Behnken
designs

Table 3.28 compares the number of runs required for a given number of factors
for various Central Composite and Box-Behnken designs.

TABLE 3.28  Number of Runs Required by Central Composite and
Box-Behnken Designs

Number of Factors Central Composite Box-Behnken
2 13 (5 center points) -
3 20 (6 centerpoint runs) 15
4 30 (6 centerpoint runs) 27
5 33 (fractional factorial) or 52 (full factorial) 46
6 54 (fractional factorial) or 91 (full factorial) 54

Desirable Features for Response Surface Designs

A summary
of desirable
properties
for response
surface
designs

G. E. P. Box and N. R. Draper in "Empirical Model Building and Response
Surfaces," John Wiley and Sons, New York, 1987, page 477, identify desirable
properties for a response surface design:

Satisfactory distribution of information across the experimental region.

- rotatability

●   

Fitted values are as close as possible to observed values.

- minimize residuals or error of prediction

●   

Good lack of fit detection.●   

Internal estimate of error.●   

Constant variance check.●   

Transformations can be estimated.●   

Suitability for blocking.●   

Sequential construction of higher order designs from simpler designs●   

Minimum number of treatment combinations.●   

Good graphical analysis through simple data patterns.●   

Good behavior when errors in settings of input variables occur.●   

5.3.3.6.3. Comparisons of response surface designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.6. Response surface designs

5.3.3.6.4.Blocking a response surface design

How can we block a response surface design?

When
augmenting
a resolution
V design to
a CCC
design by
adding star
points, it
may be
desirable to
block the
design

If an investigator has run either a 2k full factorial or a 2k-p fractional factorial
design of at least resolution V, augmentation of that design to a central
composite design (either CCC of CCF) is easily accomplished by adding an
additional set (block) of star and centerpoint runs. If the factorial experiment
indicated (via the t test) curvature, this composite augmentation is the best
follow-up option (follow-up options for other situations will be discussed later).

An
orthogonal
blocked
response
surface
design has
advantages

An important point to take into account when choosing a response surface
design is the possibility of running the design in blocks. Blocked designs are
better designs if the design allows the estimation of individual and interaction
factor effects independently of the block effects. This condition is called
orthogonal blocking. Blocks are assumed to have no impact on the nature and
shape of the response surface.

CCF
designs
cannot be
orthogonally
blocked

The CCF design does not allow orthogonal blocking and the Box-Behnken
designs offer blocking only in limited circumstances, whereas the CCC does
permit orthogonal blocking. 

5.3.3.6.4. Blocking a response surface design
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Axial and
factorial
blocks

In general, when two blocks are required there should be an axial block and a
factorial block. For three blocks, the factorial block is divided into two blocks
and the axial block is not split. The blocking of the factorial design points
should result in orthogonality between blocks and individual factors and
between blocks and the two factor interactions.

The following Central Composite design in two factors is broken into two
blocks.

Table of
CCD design
with 2
factors and
2 blocks

TABLE 3.29  CCD: 2 Factors, 2 Blocks
Pattern Block X1 X2 Comment

-- +1 -1 -1 Full Factorial
-+ +1 -1 +1 Full Factorial
+- +1 +1 -1 Full Factorial
++ +1 +1 +1 Full Factorial
00 +1  0  0 Center-Full Factorial
00 +1  0  0 Center-Full Factorial
00 +1  0  0 Center-Full Factorial
-0 +2 -1.414214  0 Axial
+0 +2 +1.414214  0 Axial
0- +2  0 -1.414214 Axial
0+ +2  0 +1.414214 Axial
00 +2  0  0 Center-Axial
00 +2  0  0 Center-Axial
00 +2  0  0 Center-Axial

Note that the first block includes the full factorial points and three centerpoint
replicates. The second block includes the axial points and another three
centerpoint replicates. Naturally these two blocks should be run as two separate
random sequences.

Table of
CCD design
with 3
factors and
3 blocks

The following three examples show blocking structure for various designs.

TABLE 3.30  CCD: 3 Factors 3 Blocks, Sorted by Block
Pattern Block X1 X2 X3 Comment

--- 1 -1 -1 -1 Full Factorial
-++ 1 -1 +1 +1 Full Factorial
+-+ 1 +1 -1 +1 Full Factorial
++- 1 +1 +1 -1 Full Factorial
000 1  0  0  0 Center-Full Factorial
000 1  0  0  0 Center-Full Factorial
--+ 2 -1 -1 +1 Full Factorial

5.3.3.6.4. Blocking a response surface design
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-+- 2 -1 +1 -1 Full Factorial
+-- 2 +1 -1 -1 Full Factorial
+++ 2 +1 +1 +1 Full Factorial
000 2  0  0  0 Center-Full Factorial
000 2  0  0  0 Center-Full Factorial
-00 3 -1.681793  0  0 Axial
+00 3 +1.681793  0  0 Axial
0-0 3  0 -1.681793  0 Axial
0+0 3  0 +1.681793  0 Axial
00- 3  0  0 -1.681793 Axial
00+ 3  0  0 +1.681793 Axial
000 3  0  0  0 Axial
000 3  0  0  0 Axial

Table of
CCD design
with 4
factors and
3 blocks

TABLE 3.31  CCD: 4 Factors, 3 Blocks
Pattern Block X1 X2 X3 X4 Comment

---+ 1 -1 -1 -1 +1 Full Factorial
--+- 1 -1 -1 +1 -1 Full Factorial
-+-- 1 -1 +1 -1 -1 Full Factorial
-+++ 1 -1 +1 +1 +1 Full Factorial
+--- 1 +1 -1 -1 -1 Full Factorial
+-++ 1 +1 -1 +1 +1 Full Factorial
++-+ 1 +1 +1 -1 +1 Full Factorial
+++- 1 +1 +1 +1 -1 Full Factorial
0000 1  0  0  0  0 Center-Full Factorial
0000 1  0  0  0  0 Center-Full Factorial
---- 2 -1 -1 -1 -1 Full Factorial
--++ 2 -1 -1 +1 +1 Full Factorial
-+-+ 2 -1 +1 -1 +1 Full Factorial
-++- 2 -1 +1 +1 -1 Full Factorial
+--+ 2 +1 -1 -1 +1 Full Factorial
+-+- 2 +1 -1 +1 -1 Full Factorial
++-- 2 +1 +1 -1 -1 Full Factorial
++++ 2 +1 +1 +1 +1 Full Factorial
0000 2  0  0  0  0 Center-Full Factorial
0000 2  0  0  0  0 Center-Full Factorial
-000 3 -2  0  0  0 Axial
+000 3 +2  0  0  0 Axial
+000 3 +2  0  0  0 Axial
0-00 3  0 -2  0  0 Axial
0+00 3  0 +2  0  0 Axial
00-0 3  0  0 -2  0 Axial

5.3.3.6.4. Blocking a response surface design
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00+0 3  0  0 +2  0 Axial
000- 3  0  0  0 -2 Axial
000+ 3  0  0  0 +2 Axial
0000 3  0  0  0  0 Center-Axial

Table
of
CCD
design
with 5
factors
and 2
blocks

TABLE 3.32  CCD: 5 Factors, 2 Blocks
Pattern Block X1 X2 X3 X4 X5 Comment

----+ 1 -1 -1 -1 -1 +1 Fractional Factorial
---+- 1 -1 -1 -1 +1 -1 Fractional Factorial
--+-- 1 -1 -1 +1 -1 -1 Fractional Factorial
--+++ 1 -1 -1 +1 +1 +1 Fractional Factorial
-+--- 1 -1 +1 -1 -1 -1 Fractional Factorial
-+-++ 1 -1 +1 -1 +1 +1 Fractional Factorial
-++-+ 1 -1 +1 +1 -1 +1 Fractional Factorial
-+++- 1 -1 +1 +1 +1 -1 Fractional Factorial
+---- 1 +1 -1 -1 -1 -1 Fractional Factorial
+--++ 1 +1 -1 -1 +1 +1 Fractional Factorial
+-+-+ 1 +1 -1 +1 -1 +1 Fractional Factorial
+-++- 1 +1 -1 +1 +1 -1 Fractional Factorial
++--+ 1 +1 +1 -1 -1 +1 Fractional Factorial
++-+- 1 +1 +1 -1 +1 -1 Fractional Factorial
+++-- 1 +1 +1 +1 -1 -1 Fractional Factorial
+++++ 1 +1 +1 +1 +1 +1 Fractional Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
-0000 2 -2  0  0  0  0 Axial
+0000 2 +2  0  0  0  0 Axial
0-000 2  0 -2  0  0  0 Axial
0+000 2  0 +2  0  0  0 Axial
00-00 2  0  0 -2  0  0 Axial
00+00 2  0  0 +2  0  0 Axial
000-0 2  0  0  0 -2  0 Axial
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000+0 2  0  0  0 +2  0 Axial
0000- 2  0  0  0  0 -2 Axial
0000+ 2  0  0  0  0 +2 Axial
00000 2  0  0  0  0  0 Center-Axial

5.3.3.6.4. Blocking a response surface design
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.7.Adding centerpoints

Center point, or `Control' Runs

Centerpoint
runs provide
a check for
both process
stability and
possible
curvature

As mentioned earlier in this section, we add centerpoint runs
interspersed among the experimental setting runs for two purposes:

To provide a measure of process stability and
inherent variability

1.  

To check for curvature.2.  

Centerpoint
runs are not
randomized

Centerpoint runs should begin and end the experiment, and should be
dispersed as evenly as possible throughout the design matrix. The
centerpoint runs are not randomized! There would be no reason to
randomize them as they are there as guardians against process instability
and the best way to find instability is to sample the process on a regular
basis.

Rough rule
of thumb is
to add 3 to 5
center point
runs to your
design

With this in mind, we have to decide on how many centerpoint runs to
do. This is a tradeoff between the resources we have, the need for
enough runs to see if there is process instability, and the desire to get the
experiment over with as quickly as possible. As a rough guide, you
should generally add approximately 3 to 5 centerpoint runs to a full or
fractional factorial design.

5.3.3.7. Adding centerpoints
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Table of
randomized,
replicated
23 full
factorial
design with
centerpoints

In the following Table we have added three centerpoint runs to the
otherwise randomized design matrix, making a total of nineteen runs.

TABLE 3.32  Randomized, Replicated 23 Full Factorial Design
Matrix with Centerpoint Control Runs Added

 Random Order Standard Order SPEED FEED DEPTH
1 not applicable not applicable 0 0 0
2 1 5 -1 -1 1
3 2 15 -1 1 1
4 3 9 -1 -1 -1
5 4 7 -1 1 1
6 5 3 -1 1 -1
7 6 12 1 1 -1
8 7 6 1 -1 1
9 8 4 1 1 -1
10 not applicable not applicable 0 0 0
11 9 2 1 -1 -1
12 10 13 -1 -1 1
13 11 8 1 1 1
14 12 16 1 1 1
15 13 1 -1 -1 -1
16 14 14 1 -1 1
17 15 11 -1 1 -1
18 16 10 1 -1 -1
19 not applicable not applicable 0 0 0

Preparing a
worksheet
for operator
of
experiment

To prepare a worksheet for an operator to use when running the
experiment, delete the columns `RandOrd' and `Standard Order.' Add an
additional column for the output (Yield) on the right, and change all `-1',
`0', and `1' to original factor levels as follows.

5.3.3.7. Adding centerpoints
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Operator
worksheet

TABLE 3.33  DOE Worksheet Ready to Run

Sequence
Number Speed Feed Depth Yield

1 20 0.003 0.015  
2 16 0.001 0.02  
3 16 0.005 0.02  
4 16 0.001 0.01  
5 16 0.005 0.02  
6 16 0.005 0.01  
7 24 0.005 0.01  
8 24 0.001 0.02  
9 24 0.005 0.01  
10 20 0.003 0.015  
11 24 0.001 0.01  
12 16 0.001 0.02  
13 24 0.005 0.02  
14 24 0.005 0.02  
15 16 0.001 0.01  
16 24 0.001 0.02  
17 16 0.005 0.01  
18 24 0.001 0.01  
19 20 0.003 0.015  

Note that the control (centerpoint) runs appear at rows 1, 10, and 19.

This worksheet can be given to the person who is going to do the
runs/measurements and asked to proceed through it from first row to last
in that order, filling in the Yield values as they are obtained.

Pseudo Center points

Center
points for
discrete
factors

One often runs experiments in which some factors are nominal. For
example, Catalyst "A" might be the (-1) setting, catalyst "B" might be
coded (+1). The choice of which is "high" and which is "low" is
arbitrary, but one must have some way of deciding which catalyst
setting is the "standard" one.

These standard settings for the discrete input factors together with center
points for the continuous input factors, will be regarded as the "center
points" for purposes of design.

5.3.3.7. Adding centerpoints
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Center Points in Response Surface Designs

Uniform
precision

In an unblocked response surface design, the number of center points
controls other properties of the design matrix. The number of center
points can make the design orthogonal or have "uniform precision." We
will only focus on uniform precision here as classical quadratic designs
were set up to have this property.

Variance of
prediction

Uniform precision ensures that the variance of prediction is the same at
the center of the experimental space as it is at a unit distance away from
the center.

Protection
against bias

In a response surface context, to contrast the virtue of uniform precision
designs over replicated center-point orthogonal designs one should also
consider the following guidance from Montgomery ("Design and
Analysis of Experiments," Wiley, 1991, page 547), "A uniform precision
design offers more protection against bias in the regression coefficients
than does an orthogonal design because of the presence of third-order
and higher terms in the true surface.

Controlling
 and the

number of
center
points

Myers, Vining, et al, ["Variance Dispersion of Response Surface
Designs," Journal of Quality Technology, 24, pp. 1-11 (1992)] have
explored the options regarding the number of center points and the value
of  somewhat further: An investigator may control two parameters, 
and the number of center points (nc), given k factors. Either set  =

2(k/4) (for rotatability) or  -- an axial point on perimeter of design

region. Designs are similar in performance with  preferable as k
increases. Findings indicate that the best overall design performance
occurs with  and 2  nc  5.

5.3.3.7. Adding centerpoints

http://www.itl.nist.gov/div898/handbook/pri/section3/pri337.htm (4 of 4) [7/1/2003 4:15:58 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.8. Improving fractional factorial
design resolution

Foldover
designs
increase
resolution

Earlier we saw how fractional factorial designs resulted in an alias
structure that confounded main effects with certain interactions. Often it
is useful to know how to run a few additional treatment combinations to
remove alias structures that might be masking significant effects or
interactions.

Partial
foldover
designs
break up
specific
alias
patterns

Two methods will be described for selecting these additional treatment
combinations:

Mirror-image foldover designs (to build a resolution
IV design from a resolution III design)

●   

Alternative foldover designs (to break up specific
alias patterns).

●   

5.3.3.8. Improving fractional factorial design resolution
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.8. Improving fractional factorial design resolution

5.3.3.8.1.Mirror-Image foldover designs

A foldover
design is
obtained
from a
fractional
factorial
design by
reversing the
signs of all
the columns

A mirror-image fold-over (or foldover, without the hyphen) design is
used to augment fractional factorial designs to increase the resolution

of  and Plackett-Burman designs. It is obtained by reversing the
signs of all the columns of the original design matrix. The original
design runs are combined with the mirror-image fold-over design runs,
and this combination can then be used to estimate all main effects clear
of any two-factor interaction. This is referred to as: breaking the alias
link between main effects and two-factor interactions.

Before we illustrate this concept with an example, we briefly review
the basic concepts involved.

Review of Fractional 2k-p Designs

A resolution
III design,
combined
with its
mirror-image
foldover,
becomes
resolution IV

In general, a design type that uses a specified fraction of the runs from
a full factorial and is balanced and orthogonal is called a fractional
factorial.

A 2-level fractional factorial is constructed as follows: Let the number
of runs be 2k-p. Start by constructing the full factorial for the k-p
variables. Next associate the extra factors with higher-order
interaction columns. The Table shown previously details how to do this
to achieve a minimal amount of confounding.

For example, consider the 25-2 design (a resolution III design). The full
factorial for k = 5 requires 25 = 32 runs. The fractional factorial can be
achieved in 25-2 = 8 runs, called a quarter (1/4) fractional design, by
setting X4 = X1*X2 and X5 = X1*X3.

5.3.3.8.1. Mirror-Image foldover designs
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Design
matrix for a
25-2

fractional
factorial

The design matrix for a 25-2 fractional factorial looks like:

TABLE 3.34  Design Matrix for a 25-2 Fractional Factorial

run X1 X2 X3 X4 = X1X2 X5 = X1X3
1 -1 -1 -1 +1 +1
2 +1 -1 -1 -1 -1
3 -1 +1 -1 -1 +1
4 +1 +1 -1 +1 -1
5 -1 -1 +1 +1 -1
6 +1 -1 +1 -1 +1
7 -1 +1 +1 -1 -1
8 +1 +1 +1 +1 +1

Design Generators, Defining Relation and the Mirror-Image
Foldover

Increase to
resolution IV
design by
augmenting
design matrix

In this design the X1X2 column was used to generate the X4 main
effect and the X1X3 column was used to generate the X5 main effect.
The design generators are: 4 = 12 and 5 = 13 and the defining relation
is I = 124 = 135 = 2345. Every main effect is confounded (aliased) with
at least one first-order interaction (see the confounding structure for
this design).

We can increase the resolution of this design to IV if we augment the 8
original runs, adding on the 8 runs from the mirror-image fold-over
design. These runs make up another 1/4 fraction design with design
generators 4 = -12 and 5 = -13 and defining relation I = -124 = -135 =
2345. The augmented runs are:

Augmented
runs for the
design matrix

run X1 X2 X3 X4 = -X1X2 X5 = -X1X3
9 +1 +1 +1 -1 -1
10 -1 +1 +1 +1 +1
11 +1 -1 +1 +1 -1
12 -1 -1 +1 -1 +1
13 +1 +1 -1 -1 +1
14 -1 +1 -1 +1 -1
15 +1 -1 -1 +1 +1
16 -1 -1 -1 -1 -1

5.3.3.8.1. Mirror-Image foldover designs
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Mirror-image
foldover
design
reverses all
signs in
original
design matrix

A mirror-image foldover design is the original design with all signs
reversed. It breaks the alias chains between every main factor and
two-factor interactionof a resolution III design. That is, we can
estimate all the main effects clear of any two-factor interaction.

A 1/16 Design Generator Example

27-3 example Now we consider a more complex example.

We would like to study the effects of 7 variables. A full 2-level
factorial, 27, would require 128 runs.

Assume economic reasons restrict us to 8 runs. We will build a 27-4 =
23 full factorial and assign certain products of columns to the X4, X5,
X6 and X7 variables. This will generate a resolution III design in which
all of the main effects are aliased with first-order and higher interaction
terms. The design matrix (see the previous Table for a complete
description of this fractional factorial design) is:

Design
matrix for
27-3

fractional
factorial

Design Matrix for a 27-3 Fractional Factorial

run X1 X2 X3
X4 =
X1X2

X5 =
X1X3

X6 =
X2X3

X7 =
X1X2X3

1 -1 -1 -1 +1 +1 +1 -1
2 +1 -1 -1 -1 -1 +1 +1
3 -1 +1 -1 -1 +1 -1 +1
4 +1 +1 -1 +1 -1 -1 -1
5 -1 -1 +1 +1 -1 -1 +1
6 +1 -1 +1 -1 +1 -1 -1
7 -1 +1 +1 -1 -1 +1 -1
8 +1 +1 +1 +1 +1 +1 +1

Design
generators
and defining
relation for
this example

The design generators for this 1/16 fractional factorial design are:

4 = 12, 5 = 13, 6 = 23 and 7 = 123

From these we obtain, by multiplication, the defining relation:

I = 124 = 135 = 236 = 347 = 257 = 167 = 456 = 1237 =
2345 = 1346 = 1256 = 1457 = 2467 = 3567 = 1234567.

5.3.3.8.1. Mirror-Image foldover designs
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Computing
alias
structure for
complete
design

Using this defining relation, we can easily compute the alias structure
for the complete design, as shown previously in the link to the
fractional design Table given earlier. For example, to figure out which
effects are aliased (confounded) with factor X1 we multiply the
defining relation by 1 to obtain:

1 = 24 = 35 = 1236 = 1347 = 1257 = 67 = 1456 = 237 = 12345 =
346 = 256 = 457 = 12467 = 13567 = 234567

In order to simplify matters, let us ignore all interactions with 3 or
more factors; we then have the following 2-factor alias pattern for X1:
1 = 24 = 35 = 67 or, using the full notation, X1 = X2*X4 = X3*X5 =
X6*X7.

The same procedure can be used to obtain all the other aliases for each
of the main effects, generating the following list:

1 = 24 = 35 = 67
2 = 14 = 36 = 57
3 = 15 = 26 = 47
4 = 12 = 37 = 56
5 = 13 = 27 = 46
6 = 17 = 23 = 45
7 = 16 = 25 = 34

Signs in
every column
of original
design matrix
reversed for
mirror-image
foldover
design

The chosen design used a set of generators with all positive signs. The
mirror-image foldover design uses generators with negative signs for
terms with an even number of factors or, 4 = -12, 5 = -13, 6 = -23 and 7
= 123. This generates a design matrix that is equal to the original
design matrix with every sign in every column reversed.

If we augment the initial 8 runs with the 8 mirror-image foldover
design runs (with all column signs reversed), we can de-alias all the
main effect estimates from the 2-way interactions. The additional runs
are:

5.3.3.8.1. Mirror-Image foldover designs
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Design
matrix for
mirror-image
foldover runs

Design Matrix for the Mirror-Image Foldover Runs of the
27-3 Fractional Factorial

run X1 X2 X3
X4 =
X1X2

X5 =
X1X3

X6 =
X2X3

X7 =
X1X2X3

1 +1 +1 +1 -1 -1 -1 +1
2 -1 +1 +1 +1 +1 -1 -1
3 +1 -1 +1 +1 -1 +1 -1
4 -1 -1 +1 -1 +1 +1 +1
5 +1 +1 -1 -1 +1 +1 -1
6 -1 +1 -1 +1 -1 +1 +1
7 +1 -1 -1 +1 +1 -1 +1
8 -1 -1 -1 -1 -1 -1 -1

Alias
structure for
augmented
runs

Following the same steps as before and making the same assumptions
about the omission of higher-order interactions in the alias structure,
we arrive at:

1 = -24 = -35 = -67
2 = -14 = -36 =- 57
3 = -15 = -26 = -47
4 = -12 = -37 = -56
5 = -13 = -27 = -46
6 = -17 = -23 = -45
7 = -16 = -25 = -34

With both sets of runs, we can now estimate all the main effects free
from two factor interactions.

Build a
resolution IV
design from a
resolution III
design

Note: In general, a mirror-image foldover design is a method to build
a resolution IV design from a resolution III design. It is never used to
follow-up a resolution IV design.

5.3.3.8.1. Mirror-Image foldover designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.8. Improving fractional factorial design resolution

5.3.3.8.2.Alternative foldover designs

Alternative
foldover
designs can
be an
economical
way to break
up a selected
alias pattern

The mirror-image foldover (in which signs in all columns are reversed)
is only one of the possible follow-up fractions that can be run to
augment a fractional factorial design. It is the most common choice
when the original fraction is resolution III. However, alternative
foldover designs with fewer runs can often be utilized to break up
selected alias patterns. We illustrate this by looking at what happens
when the signs of a single factor column are reversed.

Example of
de-aliasing a
single factor

Previously, we described how we de-alias all the factors of a
27-4 experiment. Suppose that we only want to de-alias the X4 factor.
This can be accomplished by only changing the sign of X4 = X1X2 to
X4 = -X1X2. The resulting design is:

Table
showing
design
matrix of a
reverse X4
foldover
design

TABLE 3.36  A "Reverse X4" Foldover Design
run X1 X2 X3 X4 = -X1X2 X5 = -X1X3 X6 = X2X3 X7 = X1X2X3

1 -1 -1 -1 -1 +1 +1 -1
2 +1 -1 -1 +1 -1 +1 +1
3 -1 +1 -1 +1 +1 -1 +1
4 +1 +1 -1 -1 -1 -1 -1
5 -1 -1 +1 -1 -1 -1 +1
6 +1 -1 +1 +1 +1 -1 -1
7 -1 +1 +1 +1 -1 +1 -1
8 +1 +1 +1 -1 +1 +1 +1

5.3.3.8.2. Alternative foldover designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3382.htm (1 of 3) [7/1/2003 4:15:59 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Alias
patterns and
effects that
can be
estimated in
the example
design

The two-factor alias patterns for X4 are: Original experiment: X4 =
X1X2 = X3X7 = X5X6; "Reverse X4" foldover experiment: X4 = -X1X2
= -X3X7 = -X5X6.

The following effects can be estimated by combining the original 
with the "Reverse X4" foldover fraction:

X1 + X3X5 + X6X7
X2 + X3X6 + X5X7
X3 + X1X5 + X2X6
X4
X5 + X1X3 + X2X7
X6 + X2X3 + X1X7
X7 + X2X5 + X1X6
X1X4
X2X4
X3X4
X4X5
X4X6
X4X7
X1X2 + X3X7 + X5X6

Note: The 16 runs allow estimating the above 14 effects, with one
degree of freedom left over for a possible block effect.

Advantage
and
disadvantage
of this
example
design

The advantage of this follow-up design is that it permits estimation of
the X4 effect and each of the six two-factor interaction terms involving
X4.

The disadvantage is that the combined fractions still yield a resolution
III design, with all main effects other than X4 aliased with two-factor
interactions.

Case when
purpose is
simply to
estimate all
two-factor
interactions
of a single
factor

Reversing a single factor column to obtain de-aliased two-factor
interactions for that one factor works for any resolution III or IV design.
When used to follow-up a resolution IV design, there are relatively few

new effects to be estimated (as compared to  designs). When the

original resolution IV fraction provides sufficient precision, and the
purpose of the follow-up runs is simply to estimate all two-factor
interactions for one factor, the semifolding option should be considered.

Semifolding

5.3.3.8.2. Alternative foldover designs
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Number of
runs can be
reduced for
resolution IV
designs

For resolution IV fractions, it is possible to economize on the number of
runs that are needed to break the alias chains for all two-factor
interactions of a single factor. In the above case we needed 8 additional
runs, which is the same number of runs that were used in the original
experiment. This can be improved upon.

Additional
information
on John's 3/4
designs

We can repeat only the points that were set at the high levels of the
factor of choice and then run them at their low settings in the next
experiment. For the given example, this means an additional 4 runs
instead 8. We mention this technique only in passing, more details may
be found in the references (or see John's 3/4 designs).

5.3.3.8.2. Alternative foldover designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.9.Three-level full factorial designs

Three-level
designs are
useful for
investigating
quadratic
effects

The three-level design is written as a 3k factorial design. It means that k factors
are considered, each at 3 levels. These are (usually) referred to as low,
intermediate and high levels. These levels are numerically expressed as 0, 1,
and 2. One could have considered the digits -1, 0, and +1, but this may be
confusing with respect to the 2-level designs since 0 is reserved for center
points. Therefore, we will use the 0, 1, 2 scheme. The reason that the three-level
designs were proposed is to model possible curvature in the response function
and to handle the case of nominal factors at 3 levels. A third level for a
continuous factor facilitates investigation of a quadratic relationship between
the response and each of the factors.

Three-level
design may
require
prohibitive
number of
runs

Unfortunately, the three-level design is prohibitive in terms of the number of
runs, and thus in terms of cost and effort. For example a two-level design with
center points is much less expensive while it still is a very good (and simple)
way to establish the presence or absence of curvature.

The 32 design

The simplest
3-level design
- with only 2
factors

This is the simplest three-level design. It has two factors, each at three levels.
The 9 treatment combinations for this type of design can be shown pictorially as
follows: 

FIGURE 3.23 A 32 Design Schematic

5.3.3.9. Three-level full factorial designs
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A notation such as "20" means that factor A is at its high level (2) and factor B
is at its low level (0).

The 33 design

The model
and treatment
runs for a 3
factor, 3-level
design

This is a design that consists of three factors, each at three levels. It can be
expressed as a 3 x 3 x 3 = 33 design. The model for such an experiment is

where each factor is included as a nominal factor rather than as a continuous
variable. In such cases, main effects have 2 degrees of freedom, two-factor
interactions have 22 = 4 degrees of freedom and k-factor interactions have 2k

degrees of freedom. The model contains 2 + 2 + 2 + 4 + 4 + 4 + 8 = 26 degrees
of freedom. Note that if there is no replication, the fit is exact and there is no
error term (the epsilon term) in the model. In this no replication case, if one
assumes that there are no three-factor interactions, then one can use these 8
degrees of freedom for error estimation.

In this model we see that i = 1, 2, 3, and similarly for j and k, making 27

5.3.3.9. Three-level full factorial designs
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treatments.

Table of
treatments for
the 33 design

These treatments may be displayed as follows:

TABLE 3.37  The 33 Design

 Factor A
Factor B Factor C 0 1 2

0 0 000 100 200
0 1 001 101 201
0 2 002 102 202

1 0 010 110 210
1 1 011 111 211
1 2 012 112 212

2 0 020 120 220
2 1 021 121 221
2 2 022 122 222

Pictorial
representation
of the 33

design

The design can be represented pictorially by

FIGURE 3.24  A 33 Design Schematic

5.3.3.9. Three-level full factorial designs
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Two types of
3k designs

Two types of fractions of 3k designs are employed:

Box-Behnken designs whose purpose is to estimate a second-order model
for quantitative factors (discussed earlier in section 5.3.3.6.2)

●   

3k-p orthogonal arrays.●   

5.3.3.9. Three-level full factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.10.Three-level, mixed-level and
fractional factorial designs

Mixed level
designs have
some factors
with, say, 2
levels, and
some with 3
levels or 4
levels

The 2k and 3k experiments are special cases of factorial designs. In a
factorial design, one obtains data at every combination of the levels.
The importance of factorial designs, especially 2-level factorial designs,
was stated by Montgomery (1991): It is our belief that the two-level
factorial and fractional factorial designs should be the cornerstone of
industrial experimentation for product and process development and
improvement. He went on to say: There are, however, some situations in
which it is necessary to include a factor (or a few factors) that have
more than two levels.

This section will look at how to add three-level factors starting with
two-level designs, obtaining what is called a mixed-level design. We
will also look at how to add a four-level factor to a two-level design.
The section will conclude with a listing of some useful orthogonal
three-level and mixed-level designs (a few of the so-called Taguchi "L"
orthogonal array designs), and a brief discussion of their benefits and
disadvantages.

Generating a Mixed Three-Level and Two-Level Design

Montgomery
scheme for
generating a
mixed
design

Montgomery (1991) suggests how to derive a variable at three levels
from a 23 design, using a rather ingenious scheme. The objective is to
generate a design for one variable, A, at 2 levels and another, X, at three
levels. This will be formed by combining the -1 and 1 patterns for the B
and C factors to form the levels of the three-level factor X:

TABLE 3.38  Generating a Mixed Design

Two-Level Three-Level

B C X

-1 -1 x1

+1 -1 x2

-1 +1 x2

+1 +1 x3

Similar to the 3k case, we observe that X has 2 degrees of freedom,
which can be broken out into a linear and a quadratic component. To
illustrate how the 23 design leads to the design with one factor at two
levels and one factor at three levels, consider the following table, with
particular attention focused on the column labels.

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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Table
illustrating
the
generation
of a design
with one
factor at 2
levels and
another at 3
levels from a
23 design

 A XL XL AXL AXL XQ AXQ TRT MNT

Run A B C AB AC BC ABC A X

1 -1 -1 -1 +1 +1 +1 -1 Low Low
2 +1 -1 -1 -1 -1 +1 +1 High Low
3 -1 +1 -1 -1 +1 -1 +1 Low Medium
4 +1 +1 -1 +1 -1 -1 -1 High Medium
5 -1 -1 +1 +1 -1 -1 +1 Low Medium
6 +1 -1 +1 -1 +1 -1 -1 High Medium
7 -1 +1 +1 -1 -1 +1 -1 Low High

If quadratic
effect
negligble,
we may
include a
second
two-level
factor

If we believe that the quadratic effect is negligible, we may include a
second two-level factor, D, with D = ABC. In fact, we can convert the
design to exclusively a main effect (resolution III) situation consisting
of four two-level factors and one three-level factor. This is
accomplished by equating the second two-level factor to AB, the third
to AC and the fourth to ABC. Column BC cannot be used in this
manner because it contains the quadratic effect of the three-level factor
X.

More than one three-level factor

3-Level
factors from
24 and 25

designs

We have seen that in order to create one three-level factor, the starting
design can be a 23 factorial. Without proof we state that a 24 can split
off 1, 2 or 3 three-level factors; a 25 is able to generate 3 three-level
factors and still maintain a full factorial structure. For more on this, see
Montgomery (1991).

Generating a Two- and Four-Level Mixed Design

Constructing
a design
with one
4-level
factor and
two 2-level
factors

We may use the same principles as for the three-level factor example in
creating a four-level factor. We will assume that the goal is to construct
a design with one four-level and two two-level factors.

Initially we wish to estimate all main effects and interactions. It has
been shown (see Montgomery, 1991) that this can be accomplished via
a 24 (16 runs) design, with columns A and B used to create the four
level factor X.

Table
showing
design with
4-level, two
2-level
factors in 16
runs

TABLE 3.39  A Single Four-level Factor and Two
Two-level Factors in 16 runs

Run (A B) = X C D

1 -1 -1 x1 -1 -1

2 +1 -1 x2 -1 -1

3 -1 +1 x3 -1 -1

4 +1 +1 x4 -1 -1

5 -1 -1 x1 +1 -1

6 +1 -1 x2 +1 -1

7 -1 +1 x3 +1 -1

8 +1 +1 x4 +1 -1

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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9 -1 -1 x1 -1 +1

10 +1 -1 x2 -1 +1

11 -1 +1 x3 -1 +1

12 +1 +1 x4 -1 +1

13 -1 -1 x1 +1 +1

14 +1 -1 x2 +1 +1

15 -1 +1 x3 +1 +1

16 +1 +1 x4 +1 +1

Some Useful (Taguchi) Orthogonal "L" Array Designs

L9
design

L9 - A 34-2 Fractional Factorial Design 4 Factors
at Three Levels (9 runs)

Run X1 X2 X3 X4
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

L18
design

L18 - A 2 x 37-5 Fractional Factorial (Mixed-Level) Design
1 Factor at Two Levels and Seven Factors at 3 Levels (18 Runs)

Run X1 X2 X3 X4 X5 X6 X7 X8
1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3
4 1 2 1 1 2 2 3 3
5 1 2 2 2 3 3 1 1
6 1 2 3 3 1 1 2 2
7 1 3 1 2 1 3 2 3
8 1 3 2 3 2 1 3 1
9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 1 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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L27
design

L27 - A 313-10 Fractional Factorial Design
Thirteen Factors at Three Levels (27 Runs)

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 2 2 2 2 2 2 2 2 2 
3  1 1 1 1 3 3 3 3 3 3 3 3 3 
4 1 2 2 2 1 1 1 2 2 2 3 3 3 
5 1 2 2 2 2 2 2 3 3 3 1 1 1 
6 1 2 2 2 3 3 3 1 1 1 2 2 2 
7 1 3 3 3 1 1 1 3 3 3 2 2 2 
8 1 3 3 3 2 2 2 1 1 1 3 3 3 
9 1 3 3 3 3 3 3 2 2 2 1 1 1 

10 2 1 2 3 1 2 3 1 2 3 1 2 3 
11 2 1 2 3 2 3 1 2 3 1 2 3 1 
12 2 1 2 3 3 1 2 3 1 2 3 1 2 
13 2 2 3 1 1 2 3 2 3 1 3 1 2 
14 2 2 3 1 2 3 1 3 1 2 1 2 3 
15 2 2 3 1 3 1 2 1 2 3 2 3 1 
16 2 3 1 2 1 2 3 3 1 2 2 3 1 
17 2 3 1 2 2 3 1 1 2 3 3 1 2 
18 2 3 1 2 3 1 2 2 3 1 1 2 3 
19 3 1 3 2 1 3 2 1 3 2 1 3 2 
20 3 1 3 2 2 1 3 2 1 3 2 1 3 
21 3 1 3 2 3  2  1  3  2  1  3  2  1
22 3 2 1 3 1 3 2 2 1 3 3 2 1 
23 3 2 1 3 2 1 3 3 2 1 1 3 2 
24 3 2 1 3 3 2 1 1 3 2 2 1 3 
25 3 3 2 1 1 3 2 3 2 1 2 1 3 
26 3 3 2 1 2 1 3 1 3 2 3 2 1 
27 3 3 2 1 3 2 1 2 1 3 1 3 2 

L36
design

L36 - A Fractional Factorial (Mixed-Level) Design Eleven Factors at Two Levels and Twelve Factors at 3
Levels (36 Runs)

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3
4 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 3 3 3 3
5 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 1 1 1 1
6 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2
7 1 1 2 2 2 1 1 1 2 2 2 1 1 2 3 1 2 3 3 1 2 2 3
8 1 1 2 2 2 1 1 1 2 2 2 2 2 3 1 2 3 1 1 2 3 3 1
9 1 1 2 2 2 1 1 1 2 2 2 3 3 1 2 3 1 2 2 3 1 1 2

10 1 2 1 2 2 1 2 2 1 1 2 1 1 3 2 1 3 2 3 2 1 3 2
11 1 2 1 2 2 1 2 2 1 1 2 2 2 1 3 2 1 3 1 3 2 1 3
12 1 2 1 2 2 1 2 2 1 1 2 3 3 2 1 3 2 1 2 1 3 2 1

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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13 1 2 2 1 2 2 1 2 1 2 1 1 2 3 1 3 2 1 3 3 2 1 2
14 1 2 2 1 2 2 1 2 1 2 1 2 3 1 2 1 3 2 1 1 3 2 3
15 1 2 2 1 2 2 1 2 1 2 1 3 1 2 3 2 1 3 2 2 1 3 1
16 1 2 2 2 1 2 2 1 2 1 1 1 2 3 2 1 1 3 2 3 3 2 1
17 1 2 2 2 1 2 2 1 2 1 1 2 3 1 3 2 2 1 3 1 1 3 2
18 1 2 2 2 1 2 2 1 2 1 1 3 1 2 1 3 3 2 1 2 2 1 3
19 2 1 2 2 1 1 2 2 1 2 1 1 2 1 3 3 3 1 2 2 1 2 3
20 2 1 2 2 1 1 2 2 1 2 1 2 3 2 1 1 1 2 3 3 2 3 1
21 2 1 2 2 1 1 2 2 1 2 1 3 1 3 2 2 2 3 1 1 3 1 2
22 2 1 2 1 2 2 2 1 1 1 2 1 2 2 3 3 1 2 1 1 3 3 2
23 2 1 2 1 2 2 2 1 1 1 2 2 3 3 1 1 2 3 2 2 1 1 3
24 2 1 2 1 2 2 2 1 1 1 2 3 1 1 2 2 3 1 3 3 2 2 1
25 2 1 1 2 2 2 1 2 2 1 1 1 3 2 1 2 3 3 1 3 1 2 2
26 2 1 1 2 2 2 1 2 2 1 1 2 1 3 2 3 1 1 2 1 2 3 3
27 2 1 1 2 2 2 1 2 2 1 1 3 2 1 3 1 2 2 3 2 3 1 1
28 2 2 2 1 1 1 1 2 2 1 2 1 3 2 2 2 1 1 3 2 3 1 3
29 2 2 2 1 1 1 1 2 2 1 2 2 1 3 3 3 2 2 1 3 1 2 1
30 2 2 2 1 1 1 1 2 2 1 2 3 2 1 1 1 3 3 2 1 2 3 2
31 2 2 1 2 1 2 1 1 1 2 2 1 3 3 3 2 3 2 2 1 2 1 1
32 2 2 1 2 1 2 1 1 1 2 2 2 1 1 1 3 1 3 3 2 3 2 2
33 2 2 1 2 1 2 1 1 1 2 2 3 2 2 1 2 1 1 3 1 1 3 3
34 2 2 1 1 2 1 2 1 2 2 1 1 3 1 2 3 2 3 1 2 2 3 1
35 2 2 1 1 2 1 2 1 2 2 1 2 1 2 3 1 3 1 2 3 3 1 2
36 2 2 1 1 2 1 2 1 2 2 1 3 2 3 1 2 1 2 3 1 1 2 3

Advantages and Disadvantages of Three-Level and Mixed-Level
"L" Designs

Advantages
and
disadvantages
of three-level
mixed-level
designs

The good features of these designs are:

They are orthogonal arrays. Some analysts believe this
simplifies the analysis and interpretation of results while other
analysts believe it does not.

●   

They obtain a lot of information about the main effects in a
relatively few number of runs.

●   

You can test whether non-linear terms are needed in the model,
at least as far as the three-level factors are concerned.

●   

On the other hand, there are several undesirable features of these
designs to consider:

They provide limited information about interactions.●   

They require more runs than a comparable 2k-pdesign, and a
two-level design will often suffice when the factors are
continuous and monotonic (many three-level designs are used
when two-level designs would have been adequate).

●   

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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5. Process Improvement

5.4.Analysis of DOE data

Contents of
this section

Assuming you have a starting model that you want to fit to your
experimental data and the experiment was designed correctly for your
objective, most DOE software packages will analyze your DOE data.
This section will illustrate how to analyze DOE's by first going over the
generic basic steps and then showing software examples. The contents
of the section are:

DOE analysis steps●   

Plotting DOE data●   

Modeling DOE data●   

Testing and revising DOE models●   

Interpreting DOE results●   

Confirming DOE results●   

DOE examples

Full factorial example❍   

Fractional factorial example❍   

Response surface example❍   

●   

Prerequisite
statistical
tools and
concepts
needed for
DOE
analyses

The examples in this section assume the reader is familiar with the
concepts of

ANOVA tables (see Chapter 3 or Chapter 7)●   

p-values●   

Residual analysis●   

Model Lack of Fit tests●   

Data transformations for normality and linearity●   

5.4. Analysis of DOE data
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5. Process Improvement
5.4. Analysis of DOE data

5.4.1.What are the steps in a DOE analysis?

General
flowchart
for
analyzing
DOE data

Flowchart of DOE Analysis Steps

DOE Analysis Steps

Analysis
steps:
graphics,
theoretical
model,
actual
model,
validate
model, use
model

The following are the basic steps in a DOE analysis.

Look at the data. Examine it for outliers, typos and obvious problems. Construct as many
graphs as you can to get the big picture.

Response distributions (histograms, box plots, etc.)❍   

Responses versus time order scatter plot (a check for possible time effects)❍   

Responses versus factor levels (first look at magnitude of factor effects)❍   

Typical DOE plots (which assume standard models for effects and errors)

Main effects mean plots■   

Block plots■   

Normal or half-normal plots of the effects■   

❍   

1.  

5.4.1. What are the steps in a DOE analysis?
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Interaction plots■   

Sometimes the right graphs and plots of the data lead to obvious answers for your
experimental objective questions and you can skip to step 5. In most cases, however,
you will want to continue by fitting and validating a model that can be used to
answer your questions.

❍   

Create the theoretical model (the experiment should have been designed with this model in
mind!).

2.  

Create a model from the data. Simplify the model, if possible, using stepwise regression
methods and/or parameter p-value significance information.

3.  

Test the model assumptions using residual graphs.

If none of the model assumptions were violated, examine the ANOVA.

Simplify the model further, if appropriate. If reduction is appropriate, then
return to step 3 with a new model.

■   

❍   

If model assumptions were violated, try to find a cause.

Are necessary terms missing from the model?■   

Will a transformation of the response help? If a transformation is used, return
to step 3 with a new model.

■   

❍   

4.  

Use the results to answer the questions in your experimental objectives -- finding important
factors, finding optimum settings, etc.

5.  

Flowchart
is a
guideline,
not a
hard-and
-fast rule

Note: The above flowchart and sequence of steps should not be regarded as a "hard-and-fast rule"
for analyzing all DOE's. Different analysts may prefer a different sequence of steps and not all
types of experiments can be analyzed with one set procedure. There still remains some art in both
the design and the analysis of experiments, which can only be learned from experience. In
addition, the role of engineering judgment should not be underestimated.

5.4.1. What are the steps in a DOE analysis?
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5. Process Improvement
5.4. Analysis of DOE data

5.4.2.How to "look" at DOE data

The
importance
of looking at
the data with
a wide array
of plots or
visual
displays
cannot be
over-stressed

The right graphs, plots or visual displays of a dataset can uncover
anomalies or provide insights that go beyond what most quantitative
techniques are capable of discovering. Indeed, in many cases
quantitative techniques and models are tools used to confirm and extend
the conclusions an analyst has already formulated after carefully
"looking" at the data.

Most software packages have a selection of different kinds of plots for
displaying DOE data. Dataplot, in particular, has a wide range of
options for visualizing DOE (i.e., DEX) data. Some of these useful
ways of looking at data are mentioned below, with links to detailed
explanations in Chapter 1 (Exploratory Data Analysis or EDA) or to
other places where they are illustrated and explained. In addition,
examples and detailed explanations of visual (EDA) DOE techniques
can be found in section 5.5.9.

Plots for
viewing the
response
data

First "Look" at the Data
Histogram of responses●   

Run-sequence plot (pay special attention to results at center
points)

●   

Scatter plot (for pairs of response variables)●   

Lag plot●   

Normal probability plot●   

Autocorrelation plot●   

5.4.2. How to "look" at DOE data
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Plots for
viewing
main effects
and 2-factor
interactions,
explanation
of normal or
half-normal
plots to
detect
possible
important
effects

Subsequent Plots: Main Effects, Comparisons and 2-Way
Interactions

Quantile-quantile (q-q) plot●   

Block plot●   

Box plot●   

Bi-histogram●   

DEX scatter plot●   

DEX mean plot●   

DEX standard deviation plot●   

DEX interaction plots●   

Normal or half-normal probability plots for effects. Note: these
links show how to generate plots to test for normal (or
half-normal) data with points lining up along a straight line,
approximately, if the plotted points were from the assumed
normal (or half-normal) distribution. For two-level full factorial
and fractional factorial experiments, the points plotted are the
estimates of all the model effects, including possible interactions.
Those effects that are really negligible should have estimates that
resemble normally distributed noise, with mean zero and a
constant variance. Significant effects can be picked out as the
ones that do not line up along the straight line. Normal effect
plots use the effect estimates directly, while half-normal plots use
the absolute values of the effect estimates.

●   

Youden plots●   

Plots for
testing and
validating
models

Model testing and Validation
Response vs predictions●   

Residuals vs predictions●   

Residuals vs independent variables●   

Residuals lag plot●   

Residuals histogram●   

Normal probability plot of residuals●   

Plots for
model
prediction

Model Predictions
Contour plots●   

5.4.2. How to "look" at DOE data
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5. Process Improvement
5.4. Analysis of DOE data

5.4.3.How to model DOE data

DOE models
should be
consistent
with the
goal of the
experiment

In general, the trial model that will be fit to DOE data should be
consistent with the goal of the experiment and has been predetermined
by the goal of the experiment and the experimental design and data
collection methodology.

Comparative
designs

Models were given earlier for comparative designs (completely
randomized designs, randomized block designs and Latin square
designs).

Full
factorial
designs

For full factorial designs with k factors (2k runs, not counting any center
points or replication runs), the full model contains all the main effects
and all orders of interaction terms. Usually, higher-order (three or more
factors) interaction terms are included initially to construct the normal
(or half-normal) plot of effects, but later dropped when a simpler,
adequate model is fit. Depending on the software available or the
analyst's preferences, various techniques such as normal or half-normal
plots, Youden plots, p-value comparisons and stepwise regression
routines are used to reduce the model to the minimum number of needed
terms. A JMP example of model selection is shown later in this section
and a Dataplot example is given as a case study.

Fractional
factorial
designs

For fractional factorial screening designs, it is necessary to know the
alias structure in order to write an appropriate starting model  containing
only the interaction terms the experiment was designed to estimate
(assuming all terms confounded with these selected terms are
insignificant). This is illustrated by the JMP fractional factorial example
later in this section. The starting model is then possibly reduced by the
same techniques described above for full factorial models.

5.4.3. How to model DOE data
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Response
surface
designs

Response surface initial models include quadratic terms and may
occasionally also include cubic terms. These models were described in
section 3.

Model
validation

Of course, as in all cases of model fitting, residual analysis and other
tests of model fit are used to confirm or adjust models, as needed.

5.4.3. How to model DOE data
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5. Process Improvement
5.4. Analysis of DOE data

5.4.4.How to test and revise DOE models

Tools for
testing,
revising,
and
selecting
models

All the tools and procedures for testing, revising and selecting final
DOE models are covered in various sections of the Handbook. The
outline below gives many of the most common and useful techniques
and has links to detailed explanations.

Outline of Model Testing and Revising: Tools and Procedures

An outline
(with links)
covers most
of the useful
tools and
procedures
for testing
and revising
DOE models

Graphical Indicators for testing models (using residuals)

Response vs predictions❍   

Residuals vs predictions❍   

Residuals vs independent variables❍   

Residuals lag plot❍   

Residuals histogram❍   

Normal probability plot of residuals❍   

●   

Overall numerical indicators for testing models and model terms

R Squared and R Squared adjusted❍   

Model Lack of Fit tests❍   

ANOVA tables (see Chapter 3 or Chapter 7)❍   

p-values❍   

●   

Model selection tools or procedures

ANOVA tables (see Chapter 3 or Chapter 7)❍   

p-values❍   

Residual analysis❍   

Model Lack of Fit tests❍   

Data transformations for normality and linearity❍   

Stepwise regression procedures❍   

●   

5.4.4. How to test and revise DOE models
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Normal or half-normal plots of effects (primarily for
two-level full and fractional factorial experiments)

❍   

Youden plots❍   

Other methods❍   

5.4.4. How to test and revise DOE models
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5. Process Improvement
5.4. Analysis of DOE data

5.4.5.How to interpret DOE results

Final model
used to
make
conclusions
and
decisions

Assume that you have a final model that has passed all the relevant tests
(visual and quantitative) and you are ready to make conclusions and
decisions. These should be responses to the questions or outputs
dictated by the original experimental goals.

Checklist relating DOE conclusions or outputs to experimental
goals or experimental purpose:

A checklist
of how to
compare
DOE results
to the
experimental
goals

Do the responses differ significantly over the factor levels?
(comparative experiment goal)

●   

Which are the significant effects or terms in the final model?
(screening experiment goal)

●   

What is the model for estimating responses?

Full factorial case (main effects plus significant
interactions)

❍   

Fractional factorial case (main effects plus significant
interactions that are not confounded with other possibly
real effects)

❍   

RSM case (allowing for quadratic or possibly cubic
models, if needed)

❍   

●   

What responses are predicted and how can responses be
optimized? (RSM goal)

Contour plots❍   

JMP prediction profiler (or other software aids)❍   

Settings for confirmation runs and prediction intervals for
results

❍   

●   

5.4.5. How to interpret DOE results
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5. Process Improvement
5.4. Analysis of DOE data

5.4.6.How to confirm DOE results
(confirmatory runs)

Definition of
confirmation
runs

When the analysis of the experiment is complete, one must verify that
the predictions are good. These are called confirmation runs.

The interpretation and conclusions from an experiment may include a
"best" setting to use to meet the goals of the experiment. Even if this
"best" setting were included in the design, you should run it again as
part of the confirmation runs to make sure nothing has changed and
that the response values are close to their predicted values. would get.

At least 3
confirmation
runs should
be planned

In an industrial setting, it is very desirable to have a stable process.
Therefore, one should run more than one test at the "best" settings. A
minimum of 3 runs should be conducted (allowing an estimate of
variability at that setting).

If the time between actually running the experiment and conducting the
confirmation runs is more than a few hours, the experimenter must be
careful to ensure that nothing else has changed since the original data
collection.

Carefully
duplicate the
original
environment

The confirmation runs should be conducted in an environment as
similar as possible to the original experiment. For example, if the
experiment were conducted in the afternoon and the equipment has a
warm-up effect, the confirmation runs should be conducted in the
afternoon after the equipment has warmed up. Other extraneous factors
that may change or affect the results of the confirmation runs are:
person/operator on the equipment, temperature, humidity, machine
parameters, raw materials, etc.

5.4.6. How to confirm DOE results (confirmatory runs)
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Checks for
when
confirmation
runs give
surprises

What do you do if you don't obtain the results you expected? If the
confirmation runs don't produce the results you expected:

check to see that nothing has changed since the original data
collection

1.  

verify that you have the correct settings for the confirmation
runs

2.  

revisit the model to verify the "best" settings from the analysis3.  

verify that you had the correct predicted value for the
confirmation runs.

4.  

If you don't find the answer after checking the above 4 items, the
model may not predict very well in the region you decided was "best".
You still learned from the experiment and you should use the
information gained from this experiment to design another follow-up
experiment.

Even when
the
experimental
goals are not
met,
something
was learned
that can be
used in a
follow-up
experiment

Every well-designed experiment is a success in that you learn
something from it. However, every experiment will not necessarily
meet the goals established before experimentation. That is why it
makes sense to plan to experiment sequentially in order to meet the
goals.

5.4.6. How to confirm DOE results (confirmatory runs)
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5. Process Improvement
5.4. Analysis of DOE data

5.4.7.Examples of DOE's

Software
packages do
the
calculations
and plot the
graphs for a
DOE
analysis: the
analyst has
to know
what to
request and
how to
interpret the
results

Most DOE analyses of industrial experiments will be performed by
statistical software packages. Good statistical software enables the
analyst to view graphical displays and to build models and test
assumptions. Occasionally the goals of the experiment can be achieved
by simply examining appropriate graphical displays of the experimental
responses. In other cases, a satisfactory model has to be fit in order to
determine the most significant factors or the optimal contours of the
response surface. In any case, the software will perform the appropriate
calculations as long as the analyst knows what to request and how to
interpret the program outputs.

Three
detailed
DOE
analyses
will be given
using JMP
software

Perhaps one of the best ways to learn how to use DOE analysis software
to analyze the results of an experiment is to go through several detailed
examples, explaining each step in the analysis. This section will
illustrate the use of JMP 3.2.6 software to analyze three real
experiments. Analysis using other software packages would generally
proceed along similar paths.

The examples cover three basic types of DOE's:

A full factorial experiment1.  

A fractional factorial experiment2.  

A response surface experiment3.  

5.4.7. Examples of DOE's
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5. Process Improvement
5.4. Analysis of DOE data
5.4.7. Examples of DOE's

5.4.7.1.Full factorial example

Data Source

This example
uses data from
a NIST high
performance
ceramics
experiment

This data set was taken from an experiment that was performed a few years ago at NIST (by Said
Jahanmir of the Ceramics Division in the Material Science and Engineering Laboratory). The
original analysis was performed primarily by Lisa Gill of the Statistical Engineering Division.
The example shown here is an independent analysis of a modified portion of the original data set.

The original data set was part of a high performance ceramics experiment with the goal of
characterizing the effect of grinding parameters on sintered reaction-bonded silicon nitride,
reaction bonded silicone nitride, and sintered silicon nitride.

Only modified data from the first of the 3 ceramic types (sintered reaction-bonded silicon nitride)
will be discussed in this illustrative example of a full factorial data analysis.

The reader may want to download the data as a text file and try using other software packages to
analyze the data.

Description of Experiment: Response and Factors

Response and
factor
variables used
in the
experiment

Purpose: To determine the effect of machining factors on ceramic strength
Response variable = mean (over 15 repetitions) of the ceramic strength
Number of observations = 32 (a complete 25 factorial design)

Response Variable Y = Mean (over 15 reps) of Ceramic Strength
Factor 1 = Table Speed (2 levels: slow (.025 m/s) and fast (.125 m/s))
Factor 2 = Down Feed Rate (2 levels: slow (.05 mm) and fast (.125 mm))
Factor 3 = Wheel Grit (2 levels: 140/170 and 80/100)
Factor 4 = Direction (2 levels: longitudinal and transverse)
Factor 5 = Batch (2 levels: 1 and 2)

Since two factors were qualitative (direction and batch) and it was reasonable to expect monotone
effects from the quantitative factors, no centerpoint runs were included.

5.4.7.1. Full factorial example
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JMP
spreadsheet of
the data

The design matrix, with measured ceramic strength responses, appears below. The actual
randomized run order is given in the last column. (The interested reader may download the data
as a text file or as a JMP file.)

Analysis of the Experiment

Analysis
follows 5 basic
steps

The experimental data will be analyzed following the previously described 5 basic steps using
SAS JMP 3.2.6 software.

Step 1: Look at the data

5.4.7.1. Full factorial example
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Plot the
response
variable

We start by plotting the response data several ways to see if any trends or anomalies appear that
would not be accounted for by the standard linear response models.

First we look at the distribution of all the responses irrespective of factor levels.

The following plots were generared:

The first plot is a normal probability plot of the response variable. The straight red line is
the fitted nornal distribution and the curved red lines form a simultaneous 95% confidence
region for the plotted points, based on the assumption of normality.

1.  

The second plot is a box plot of the response variable. The "diamond" is called (in JMP) a
"means diamond" and is centered around the sample mean, with endpoints spanning a 95%
normal confidence interval for the sample mean.

2.  

The third plot is a histogram of the response variable.3.  

Clearly there is "structure" that we hope to account for when we fit a response model. For
example, note the separation of the response into two roughly equal-sized clumps in the
histogram. The first clump is centered approximately around the value 450 while the second
clump is centered approximately around the value 650.

5.4.7.1. Full factorial example
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Plot of
response
versus run
order

Next we look at the responses plotted versus run order to check whether there might be a time
sequence component affecting the response levels.

Plot of Response Vs. Run Order

As hoped for, this plot does not indicate that time order had much to do with the response levels.

Box plots of
response by
factor
variables

Next, we look at plots of the responses sorted by factor columns.

5.4.7.1. Full factorial example
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Several factors, most notably "Direction" followed by "Batch" and possibly "Wheel Grit", appear
to change the average response level.

Step 2: Create the theoretical model

Theoretical
model: assume
all 4-factor and
higher
interaction
terms are not
significant

With a 25 full factorial experiment we can fit a model containing a mean term, all 5 main effect
terms, all 10 2-factor interaction terms, all 10 3-factor interaction terms, all 5 4-factor interaction
terms and the 5-factor interaction term (32 parameters). However, we start by assuming all three
factor and higher interaction terms are non-existent (it's very rare for such high-order interactions
to be significant, and they are very difficult to interpret from an engineering viewpoint). That
allows us to accumulate the sums of squares for these terms and use them to estimate an error
term. So we start out with a theoretical model with 26 unknown constants, hoping the data will
clarify which of these are the significant main effects and interactions we need for a final model.

Step 3: Create the actual model from the data

Output from
fitting up to
third-order
interaction
terms

After fitting the 26 parameter model, the following analysis table is displayed:

     Output after Fitting Third Order Model to Response Data
               Response:     Y: Strength

                   Summary of Fit
                RSquare         0.995127
                RSquare Adj     0.974821
          Root Mean Square Error     17.81632
           Mean of Response         546.8959
                   Observations  32

Effect Test
                                 Sum
Source                DF     of Squares  F Ratio     Prob>F
X1: Table Speed        1       894.33     2.8175     0.1442
X2: Feed Rate          1      3497.20    11.0175     0.0160
X1: Table Speed*       1      4872.57    15.3505     0.0078
    X2: Feed Rate
X3: Wheel Grit         1     12663.96    39.8964     0.0007
X1: Table Speed*       1      1838.76     5.7928     0.0528
    X3: Wheel Grit

5.4.7.1. Full factorial example

http://www.itl.nist.gov/div898/handbook/pri/section4/pri471.htm (5 of 15) [7/1/2003 4:16:04 PM]



X2: Feed Rate*         1       307.46     0.9686     0.3630
    X3: Wheel Grit
X1:Table Speed*        1       357.05     1.1248     0.3297
   X2: Feed Rate*
   X3: Wheel Grit
X4: Direction          1    315132.65   992.7901     <.0001
X1: Table Speed*       1      1637.21     5.1578     0.0636
    X4: Direction
X2: Feed Rate*         1      1972.71     6.2148     0.0470
    X4: Direction
X1: Table Speed        1      5895.62    18.5735     0.0050
    X2: Feed Rate*
    X4: Direction
X3: Wheel Grit*        1      3158.34     9.9500     0.0197
    X4: Direction
X1: Table Speed*       1         2.12     0.0067     0.9376
    X3: Wheel Grit*
    X4: Direction
X2: Feed Rate*         1        44.49     0.1401     0.7210
    X3: Wheel Grit*
    X4: Direction
X5: Batch              1     33653.91   106.0229     <.0001
X1: Table Speed*       1       465.05     1.4651     0.2716
    X5: Batch
X2: Feed Rate*         1       199.15     0.6274     0.4585
    X5: Batch
X1: Table Speed*       1       144.71     0.4559     0.5247
    X2: Feed Rate*
    X5: Batch
X3: Wheel Grit*        1        29.36     0.0925     0.7713
    X5: Batch
X1: Table Speed*       1        30.36     0.0957     0.7676
    X3: Wheel Grit*
    X5: Batch
X2: Feed Rate*         1        25.58     0.0806     0.7860
    X3: Wheel Grit*
    X5: Batch
X4: Direction *        1      1328.83     4.1863     0.0867
    X5: Batch
X1: Table Speed*       1       544.58     1.7156     0.2382
    X4: Directio*
    X5: Batch
X2: Feed Rate*         1       167.31     0.5271     0.4952
    X4: Direction*
    X5: Batch
X3: Wheel Grit*        1        32.46     0.1023     0.7600
    X4: Direction*
    X5: Batch

This fit has a high R2 and adjusted R2, but the large number of high (>0.10) p-values (in the
"Prob>F" column) make it clear that the model has many unnecessary terms.

5.4.7.1. Full factorial example
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JMP stepwise
regression

Starting with these 26 terms, we next use the JMP Stepwise Regression option to eliminate
unnecessary terms. By a combination of stepwise regression and the removal of remaining terms
with a p-value higher than 0.05, we quickly arrive at a model with an intercept and 12 significant
effect terms.

Output from
fitting the
12-term model      Output after Fitting the 12-Term Model to Response Data

               Response:    Y: Strength

                  Summary of Fit
               RSquare 0.989114
               RSquare Adj 0.982239
         Root Mean Square Error 14.96346
          Mean of Response 546.8959
         Observations (or Sum Wgts) 32

Effect Test

                                 Sum
Source                DF     of Squares  F Ratio     Prob>F
X1: Table Speed        1       894.33     3.9942     0.0602
X2: Feed Rate          1      3497.20    15.6191     0.0009
X1: Table Speed*       1      4872.57    21.7618     0.0002
    X2: Feed Rate
X3: Wheel Grit         1     12663.96    56.5595     <.0001
X1: Table Speed*       1      1838.76     8.2122     0.0099
    X3: Wheel Grit
X4: Direction          1    315132.65  1407.4390     <.0001
X1: Table Speed*       1      1637.21     7.3121     0.0141
    X4: Direction
X2: Feed Rate*         1      1972.71     8.8105     0.0079
    X4: Direction
X1: Table Speed*       1      5895.62    26.3309     <.0001
    X2: Feed Rate*
    X4:Direction
X3: Wheel Grit*        1      3158.34    14.1057     0.0013
    X4: Direction
X5: Batch              1     33653.91   150.3044     <.0001
X4: Direction*         1      1328.83     5.9348     0.0249
    X5: Batch

5.4.7.1. Full factorial example
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Normal plot of
the effects

Non-significant effects should effectively follow an approximately normal distribution with the
same location and scale. Significant effects will vary from this normal distribution. Therefore,
another method of determining significant effects is to generate a normal plot of all 31 effects.
Those effects that are substantially away from the straight line fitted to the normal plot are
considered significant. Although this is a somewhat subjective criteria, it tends to work well in
practice. It is helpful to use both the numerical output from the fit and graphical techniques such
as the normal plot in deciding which terms to keep in the model.

The normal plot of the effects is shown below. We have labeled those effects that we consider to
be significant. In this case, we have arrived at the exact same 12 terms by looking at the normal
plot as we did from the stepwise regression.

Most of the effects cluster close to the center (zero) line and follow the fitted normal model
straight line. The effects that appear to be above or below the line by more than a small amount
are the same effects identified using the stepwise routine, with the exception of X1. Some analysts
prefer to include a main effect term when it has several significant interactions even if the main
effect term itself does not appear to be significant.

5.4.7.1. Full factorial example
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Model appears
to account for
most of the
variability

At this stage, this model appears to account for most of the variability in the response, achieving
an adjusted R2 of 0.982. All the main effects are significant, as are 6 2-factor interactions and 1
3-factor interaction. The only interaction that makes little physical sense is the " X4:
Direction*X5: Batch" interaction - why would the response using one batch of material react
differently when the batch is cut in a different direction as compared to another batch of the same
formulation?

However, before accepting any model, residuals need to be examined.

Step 4: Test the model assumptions using residual graphs (adjust and simplify as needed)

Plot of
residuals
versus
predicted
responses

First we look at the residuals plotted versus the predicted responses.

The residuals appear to spread out more with larger values of predicted strength, which should
not happen when there is a common variance.

Next we examine the normality of the residuals with a normal quantile plot, a box plot and a
histogram.

5.4.7.1. Full factorial example
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None of these plots appear to show typical normal residuals and 4 of the 32 data points appear as
outliers in the box plot.

Step 4 continued: Transform the data and fit the model again

Box-Cox
Transformation

We next look at whether we can model a transformation of the response variable and obtain
residuals with the assumed properties. JMP calculates an optimum Box-Cox transformation by
finding the value of  that minimizes the model SSE. Note: the Box-Cox transformation used in
JMP is different from the transformation used in Dataplot, but roughly equivalent.

Box-Cox Transformation Graph

The optimum is found at  = 0.2. A new column Y: Strength X is calculated and added to the
JMP data spreadsheet. The properties of this column, showing the transformation equation, are
shown below.

5.4.7.1. Full factorial example
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JMP data
transformation
menu

Data Transformation Column Properties

Fit model to
transformed
data

When the 12-effect model is fit to the transformed data, the "X4: Direction*X5: Batch"
interaction term is no longer significant. The 11-effect model fit is shown below, with parameter
estimates and p-values.

JMP output for
fitted model
after applying
Box-Cox
transformation

    Output after Fitting the 11-Effect Model to
             Tranformed Response Data

               Response:    Y: Strength X

                  Summary of Fit
               RSquare 0.99041
               RSquare Adj 0.985135
         Root Mean Square Error 13.81065
          Mean of Response 1917.115
         Observations (or Sum Wgts) 32

                       Parameter
Effect                  Estimate         p-value
Intercept               1917.115          <.0001
X1: Table Speed            5.777          0.0282
X2: Feed Rate             11.691          0.0001
X1: Table Speed*         -14.467          <.0001
    X2: Feed Rate
X3: Wheel Grit           -21.649          <.0001
X1: Table Speed*           7.339          0.007
    X3: Wheel Grit
X4: Direction            -99.272          <.0001
X1: Table Speed*          -7.188          0.0080
    X4: Direction
X2: Feed Rate*            -9.160          0.0013
    X4: Direction

5.4.7.1. Full factorial example
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X1: Table Speed*          15.325          <.0001
    X2: Feed Rate*
    X4:Direction
X3: Wheel Grit*           12.965          <.0001
    X4: Direction
X5: Batch                -31.871          <.0001

Model has high
R2

This model has a very high R2 and adjusted R2. The residual plots (shown below) are quite a bit
better behaved than before, and pass the Wilk-Shapiro test for normality.

Residual plots
from model
with
transformed
response

The run sequence plot of the residuals does not indicate any time dependent patterns.

5.4.7.1. Full factorial example

http://www.itl.nist.gov/div898/handbook/pri/section4/pri471.htm (12 of 15) [7/1/2003 4:16:04 PM]

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm


The normal probability plot, box plot, and the histogram of the residuals do not indicate any
serious violations of the model assumptions.

Step 5. Answer the questions in your experimental objectives

Important main
effects and
interaction
effects

The magnitudes of the effect estimates show that "Direction" is by far the most important factor.
"Batch" plays the next most critical role, followed by "Wheel Grit". Then, there are several
important interactions followed by "Feed Rate". "Table Speed" plays a role in almost every
significant interaction term, but is the least important main effect on its own. Note that large
interactions can obscure main effects.

Plots of the
main effects
and significant
2-way
interactions

Plots of the main effects and the significant 2-way interactions are shown below.

5.4.7.1. Full factorial example
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Prediction
profile

To determine the best setting to use for maximum ceramic strength, JMP has the "Prediction
Profile" option shown below.

Y: Strength X
Prediction Profile

The vertical lines indicate the optimal factor settings to maximize the (transformed) strength
response. Translating from -1 and +1 back to the actual factor settings, we have: Table speed at
"1" or .125m/s; Down Feed Rate at "1" or .125 mm; Wheel Grit at "-1" or 140/170 and Direction
at "-1" or longitudinal.

Unfortunately, "Batch" is also a very significant factor, with the first batch giving higher
strengths than the second. Unless it is possible to learn what worked well with this batch, and
how to repeat it, not much can be done about this factor.

Comments

5.4.7.1. Full factorial example
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Analyses with
value of
Direction fixed
indicates
complex model
is needed only
for transverse
cut

One might ask what an analysis of just the 24 factorial with "Direction" kept at -1 (i.e.,
longitudinal) would yield. This analysis turns out to have a very simple model; only
"Wheel Grit" and "Batch" are significant main effects and no interactions are significant.

If, on the other hand, we do an analysis of the 24 factorial with "Direction" kept at +1 (i.e.,
transverse), then we obtain a 7-parameter model with all the main effects and interactions
we saw in the 25 analysis, except, of course, any terms involving "Direction".

So it appears that the complex model of the full analysis came from the physical properties
of a transverse cut, and these complexities are not present for longitudinal cuts.

1.  

Half fraction
design

If we had assumed that three-factor and higher interactions were negligible before
experimenting, a  half fraction design might have been chosen. In hindsight, we would
have obtained valid estimates for all main effects and two-factor interactions except for X3
and X5, which would have been aliased with X1*X2*X4 in that half fraction.

2.  

Natural log
transformation

Finally, we note that many analysts might prefer to adopt a natural logarithm
transformation (i.e., use ln Y) as the response instead of using a Box-Cox transformation
with an exponent of 0.2. The natural logarithm transformation corresponds to an exponent
of  = 0 in the Box-Cox graph.

3.  

5.4.7.1. Full factorial example
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5. Process Improvement
5.4. Analysis of DOE data
5.4.7. Examples of DOE's

5.4.7.2.Fractional factorial example

A "Catapult" Fractional Factorial Experiment

A step-by-step
analysis of a
fractional
factorial
"catapult"
experiment

This experiment was conducted by a team of students on a catapult – a table-top wooden device
used to teach design of experiments and statistical process control. The catapult has several
controllable factors and a response easily measured in a classroom setting. It has been used for
over 10 years in hundreds of classes. Below is a small picture of a catapult that can be opened to
view a larger version.

Catapult

Description of Experiment: Response and Factors

The experiment
has five factors
that might
affect the
distance the
golf ball
travels

Purpose: To determine the significant factors that affect the distance the ball is thrown by the
catapult, and to determine the settings required to reach 3 different distances (30, 60 and 90
inches).

Response Variable: The distance in inches from the front of the catapult to the spot where the ball
lands. The ball is a plastic golf ball.

Number of observations: 20 (a 25-1 resolution V design with 4 center points).

Variables:

Response Variable Y = distance1.  

Factor 1 = band height (height of the pivot point for the rubber bands – levels were 2.25
and 4.75 inches with a centerpoint level of 3.5)

2.  

Factor 2 = start angle (location of the arm when the operator releases– starts the forward
motion of the arm – levels were 0 and 20 degrees with a centerpoint level of 10 degrees)

3.  

Factor 3 = rubber bands (number of rubber bands used on the catapult– levels were 1 and 2
bands)

4.  

Factor 4 = arm length (distance the arm is extended – levels were 0 and 4 inches with a
centerpoint level of 2 inches)

5.  

Factor 5 = stop angle (location of the arm where the forward motion of the arm is stopped
and the ball starts flying – levels were 45 and 80 degrees with a centerpoint level of 62
degrees)

6.  
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Design matrix
and responses
(in run order)

The design matrix appears below in (randomized) run order.

You can
download the
data in a
spreadsheet

Readers who want to analyze this experiment may download an Excel spreadsheet catapult.xls or
a JMP spreadsheet capapult.jmp.

One discrete
factor

Note that 4 of the factors are continuous, and one – number of rubber bands – is discrete. Due to
the prescence of this discrete factor, we actually have two different centerpoints, each with two
runs. Runs 7 and 19 are with one rubber band, and the center of the other factors, while runs 2
and 13 are with two rubber bands and the center of the other factors.

5 confirmatory
runs

After analyzing the 20 runs and determining factor settings needed to achieve predicted distances
of 30, 60 and 90 inches, the team was asked to conduct 5 confirmatory runs at each of the derived
settings.

Analysis of the Experiment

Analyze with
JMP software

The experimental data will be analyzed using SAS JMP 3.2.6 software.

Step 1: Look at the data
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Histogram, box
plot, and
normal
probability
plot of the
response

We start by plotting the data several ways to see if any trends or anomalies appear that would not
be accounted for by the models.

The distribution of the response is given below:

We can see the large spread of the data and a pattern to the data that should be explained by the
analysis.

Plot of
response
versus run
order

Next we look at the responses versus the run order to see if there might be a time sequence
component. The four highlighted points are the center points in the design. Recall that runs 2 and
13 had 2 rubber bands and runs 7 and 19 had 1 rubber band. There may be a slight aging of the
rubber bands in that the second center point resulted in a distance that was a little shorter than the
first for each pair.
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Plots of
responses
versus factor
columns

Next look at the plots of responses sorted by factor columns.
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Several factors appear to change the average response level and most have a large spread at each
of the levels.

Step 2: Create the theoretical model

The resolution
V design can
estimate main
effects and all
2-factor
interactions

With a resolution V design we are able to estimate all the main effects and all two-factor
interactions cleanly – without worrying about confounding. Therefore, the initial model will have
16 terms – the intercept term, the 5 main effects, and the 10 two-factor interactions.

Step 3: Create the actual model from the data

Variable
coding

Note we have used the orthogonally coded columns for the analysis, and have abbreviated the
factor names as follows:

Bheight = band height
Start = start angle
Bands = number of rubber bands
Stop = stop angle
Arm = arm length.

JMP output
after fitting the
trial model (all
main factors
and 2-factor
interactions)

The following is the JMP output after fitting the trial model (all main factors and 2-factor
interactions).
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Use p-values to
help select
significant
effects, and
also use a
normal plot

The model has a good R2 value, but the fact that R2 adjusted is considerably smaller indicates that
we undoubtedly have some terms in our model that are not significant. Scanning the column of
p-values (labeled Prob>|t| in the JMP output) for small values shows 5 significant effects at the
0.05 level and another one at the 0.10 level.

The normal plot of effects is a useful graphical tool to determine significant effects. The graph
below shows that there are 9 terms in the model that can be assumed to be noise. That would
leave 6 terms to be included in the model. Whereas the output above shows a p-value of 0.0836
for the interaction of bands and arm, the normal plot suggests we treat this interaction as
significant.
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A refit using
just the effects
that appear to
matter

Remove the non-significant terms from the model and refit to produce the following output:

R2 is OK and
there is no
significant
model "lack of
fit"

The R2 and R2 adjusted values are acceptable. The ANOVA table shows us that the model is
significant, and the Lack of Fit table shows that there is no significant lack of fit.

The Parameter estimates table is below.

Step 4: Test the model assumptions using residual graphs (adjust and simplify as needed)
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Histogram of
the residuals to
test the model
assumptions

We should test that the residuals are approximately normally distributed, are independent, and
have equal variances. First we create a histogram of the residual values.

The residuals do appear to have, at least approximately, a normal distributed.

Plot of
residuals
versus
predicted
values

Next we plot the residuals versus the predicted values.

There does not appear to be a pattern to the residuals. One observation about the graph, from a
single point, is that the model performs poorly in predicting a short distance. In fact, run number
10 had a measured distance of 8 inches, but the model predicts -11 inches, giving a residual of 19.
The fact that the model predicts an impossible negative distance is an obvious shortcoming of the
model. We may not be successful at predicting the catapult settings required to hit a distance less
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than 25 inches. This is not surprising since there is only one data value less than 28 inches. Recall
that the objective is for distances of 30, 60, and 90 inches.

Plot of
residuals
versus run
order

Next we plot the residual values versus the run order of the design. The highlighted points are the
centerpoint values. Recall that run numbers 2 and 13 had two rubber bands while run numbers 7
and 19 had only one rubber band.

Plots of
residuals
versus the
factor
variables

Next we look at the residual values versus each of the factors.
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The residual
graphs are not
ideal, although
the model
passes "lack of
fit"
quantitative
tests

Most of the residual graphs versus the factors appear to have a slight "frown" on the graph (higher
residuals in the center). This may indicate a lack of fit, or sign of curvature at the centerpoint
values. The Lack of Fit table, however, indicates that the lack of fit is not significant.
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Consider a
transformation
of the response
variable to see
if we can
obtain a better
model

At this point, since there are several unsatisfactory features of the model we have fit and the
resultant residuals, we should consider whether a simple transformation of the response variable
(Y = "Distance") might improve the situation.

There are at least two good reasons to suspect that using the logarithm of distance as the response
might lead to a better model.

A linear model fit to LN Y will always predict a positive distance when converted back to
the original scale for any possible combination of X factor values.

1.  

Physical considerations suggest that a realistic model for distance might require quadratic
terms since gravity plays a key role - taking logarithms often reduces the impact of
non-linear terms.

2.  

To see whether using LN Y as the response leads to a more satisfactory model, we return to step
3.

Step 3a: Fit the full model using LN Y as the response

First a main
effects and
2-factor
interaction
model is fit to
the log
distance
responses

Proceeding as before, using the coded columns of the matrix for the factor levels and Y = the
natural logarithm of distance as the response, we initially obtain:
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A simpler
model with just
main effects
has a
satisfactory fit

Examining the p-values of the 16 model coefficients, only the intercept and the 5 main effect
terms appear significant. Refitting the model with just these terms yields the following results.

This is a simpler model than previously obtained in Step 3 (no interaction term). All the terms are
highly significant and there is no quantitative indication of "lack of fit".

We next look at the residuals for this new model fit.

Step 4a: Test the (new) model assumptions using residual graphs (adjust and simplify as
needed)

Normal
probability
plot, box plot,
and histogram
of the residuals

The following normal plot, box plot, and histogram of the residuals shows no problems.
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Plot of
residuals
versus
predicted LN Y
values

A plot of the residuals versus the predicted LN Y values looks reasonable, although there might
be a tendency for the model to overestimate slightly for high predicted values.

Plot of
residuals
versus run
order

Residuals plotted versus run order again show a possible slight decreasing trend (rubber band
fatigue?).
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Plot of
residuals
versus the
factor
variables

Next we look at the residual values versus each of the factors.
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The residuals
for the main
effects model
(fit to natural
log distance)
are reasonably
well behaved

These plots still appear to have a slight "frown" on the graph (higher residuals in the center).
However, the model is generally an improvement over the previous model and will be accepted as
possibly the best that can be done without conducting a new experiment designed to fit a
quadratic model.

Step 5: Use the results to answer the questions in your experimental objectives
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Final step:
quantify the
influence of all
the significant
effects and
predict what
settings should
be used to
obtain desired
distances

The software used for this analysis (JMP 3.2.6) has an option called the "Prediction Profiler" that
can be used to derive settings that will yield a desired predicted natural log distance value. The
top graph in the figure below shows the direction and strength of each of the main effects in the
model. Using natural log 30 = 3.401 as the target value, the Profiler allows us to set up a
"Desirability" function that gives 3.401 a maximum desirability value of 1 and values above or
below 3.401 have desirabilities that rapidly decrease to 0. This is shown by the desirability graph
on the right (see the figure below).

The next step is to set "bands" to either -1 or +1 (this is a discrete factor) and move the values of
the other factors interactively until a desirability as close as possible to 1 is obtained. In the figure
below, a desirability of .989218 was obtained, yielding a predicted natural log Y of 3.399351 (or a
distance of 29.94). The corresponding (coded) factor settings are: bheight = 0.17, start = -1, bands
= -1, arm = -1 and stop = 0.

Prediction
profile plots
for Y = 30

Prediction
profile plots
for Y = 60

Repeating the profiler search for a Y value of 60 (or LN Y = 4.094) yielded the figure below for
which a natural log distance value of 4.094121 is predicted (a distance of 59.99) for coded factor
settings of bheight = 1, start = 0, bands = -1, arm = .5 and stop = .5.
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Prediction
profile plots
for Y = 90

Finally, we set LN Y = LN 90 = 4.4998 and obtain (see the figure below) a predicted log distance
of 90.20 when bheight = -0.87, start = -0.52, bands = 1, arm = 1, and stop = 0.

"Confirmation"
runs were
successful

In the confirmatory runs that followed the experiment, the team was successful at hitting all 3
targets, but did not hit them all 5 times.

NOTE: The model discovery and fitting process, as illustrated in this analysis, is often an
iterative process.
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5. Process Improvement
5.4. Analysis of DOE data
5.4.7. Examples of DOE's

5.4.7.3.Response surface model example

Data Source

A CCD DOE
with two
responses

This example uses experimental data published in Czitrom and Spagon, (1997), Statistical Case
Studies for Industrial Process Improvement. This material is copyrighted by the American
Statistical Association and the Society for Industrial and Applied Mathematics, and used with
their permission. Specifically, Chapter 15, titled "Elimination of TiN Peeling During Exposure to
CVD Tungsten Deposition Process Using Designed Experiments", describes a semiconductor
wafer processing experiment (labeled Experiment 2).

Goal,
response
variables,
and factor
variables

The goal of this experiment was to fit response surface models to the two responses, deposition
layer Uniformity and deposition layer Stress, as a function of two particular controllable factors
of the chemical vapor deposition (CVD) reactor process. These factors were Pressure (measured
in torr) and the ratio of the gaseous reactants H2 and WF6 (called H2/WF6). The experiment also
included an important third (categorical) response - the presence or absence of titanium nitride
(TiN) peeling. That part of the experiment has been omitted in this example, in order to focus on
the response surface model aspects.

To summarize, the goal is to obtain a response surface model for each response where the
responses are: "Uniformity" and "Stress". The factors are: "Pressure" and "H2/WF6".

Experiment Description

The design is
a 13-run CCI
design with 3
centerpoint
runs

The maximum and minimum values chosen for pressure were 4 torr and 80 torr. The lower and
upper H2/WF6 ratios were chosen to be 2 and 10. Since response curvature, especially for
Uniformity, was a distinct possibility, an experimental design that allowed estimating a second
order (quadratic) model was needed. The experimenters decided to use a central composite
inscribed (CCI) design. For two factors, this design is typically recommended to have 13 runs
with 5 centerpoint runs. However, the experimenters, perhaps to conserve a limited supply of
wafer resources, chose to include only 3 centerpoint runs. The design is still rotatable, but the
uniform precision property has been sacrificed.
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Table
containing
the CCI
design and
experimental
responses

The table below shows the CCI design and experimental responses, in the order in which they
were run (presumably randomized). The last two columns show coded values of the factors.

Run Pressure H2/WF6 Uniformity Stress
Coded

Pressure
Coded

H2/WF6
1  80  6 4.6 8.04 1  0 
2 42 6 6.2 7.78 0 0
3      68.87       3.17 3.4 7.58       0.71     -0.71 
4      15.13       8.83 6.9 7.27     -0.71      0.71 
5   4 6 7.3  6.49 -1 0 
6 42 6  6.4  7.69  0 0 
7     15.13       3.17  8.6  6.66     -0.71     -0.71 
8  42  2  6.3  7.16  0 -1 
9       68.87       8.83  5.1  8.33       0.71       0.71 

10  42  10  5.4  8.19  0 1 
11  42  6  5.0  7.90  0 0 

Low values
of both
responses
are better
than high

Note: "Uniformity" is calculated from four-point probe sheet resistance measurements made at 49
different locations across a wafer. The value used in the table is the standard deviation of the 49
measurements divided by their mean, expressed as a percentage. So a smaller value of
"Uniformity" indicates a more uniform layer - hence, lower values are desirable. The "Stress"
calculation is based on an optical measurement of wafer bow, and again lower values are more
desirable.

Analysis of DOE Data Using JMP 4.02

Steps for
fitting a
response
surface
model using
JMP 4.02
(other
software
packages
generally
have similar
procedures)

The steps for fitting a response surface (second-order or quadratic) model using the JMP 4.02
software for this example are as follows:

Specify the model in the "Fit Model" screen by inputting a response variable and the model
effects (factors) and using the macro labeled "Response Surface".

1.  

Choose the "Stepwise" analysis option and select "Run Model".2.  

The stepwise regression procedure allows you to select probabilities (p-values) for adding
or deleting model terms. You can also choose to build up from the simplest models by
adding and testing higher-order terms (the "forward" direction), or starting with the full
second-order model and eliminating terms until the most parsimonious, adequate model is
obtained (the "backward" direction). In combining the two approaches, JMP tests for both
addition and deletion, stopping when no further changes to the model can be made. A
choice of p-values set at 0.10 generally works well, although sometimes the user has to
experiment here. Start the stepwise selection process by selecting "go".

3.  

"Stepwise" will generate a screen with recommended model terms checked and p-values
shown (these are called "Prob>F" in the output). Sometimes, based on p-values, you might
choose to drop, or uncheck, some of these terms. However, follow the hierarchy principle
and keep all main effects that are part of significant higher-order terms or interactions, even
if the main effect p-value is higher than you would like (note that not all analysts agree
with this principle).

4.  

Choose "make model" and "run model" to obtain the full range of JMP graphic and
analytical outputs for the selected model.

5.  

Examine the fitted model plot, normal plot of effects, interaction plots, residual plots, and
ANOVA statistics (R2, R2 adjusted, lack of fit test, etc.). By saving the residuals onto your
JMP worksheet you can generate residual distribution plots (histograms, box plots, normal
plots, etc.). Use all these plots and statistics to determine whether the model fit is
satisfactory.

6.  

5.4.7.3. Response surface model example

http://www.itl.nist.gov/div898/handbook/pri/section4/pri473.htm (2 of 16) [7/1/2003 4:16:07 PM]



Use the JMP contour profiler to generate response surface contours and explore the effect
of changing factor levels on the response.

7.  

Repeat all the above steps for the second response variable.8.  

Save prediction equations for each response onto your JMP worksheet (there is an option
that does this for you). After satisfactory models have been fit to both responses, you can
use "Graph" and "Profiler" to obtain overlaid surface contours for both responses.

9.  

"Profiler" also allows you to (graphically) input a desirability function and let JMP find
optimal factor settings.

10.  

The displays below are copies of JMP output screens based on following the above 10 steps for
the "Uniformity" and "Stress" responses. Brief margin comments accompany the screen shots.

Fitting a Model to the "Uniformity" Response, Simplifying the Model and Checking
Residuals

Model
specification
screen and
stepwise
regression
(starting
from a full
second-order
model)
output

We start with the model specification screen in which we input factors and responses and choose
the model we want to fit. We start with a full second-order model and select a "Stepwise Fit". We
set "prob" to 0.10 and direction to "Mixed" and then "Go".
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The stepwise routine finds the intercept and three other terms (the main effects and the interaction
term) to be significant.

JMP output
for analyzing
the model
selected by
the stepwise
regression
for the
Uniformity
response

The following is the JMP analysis using the model selected by the stepwise regression in the
previous step. The model is fit using coded factors, since the factor columns were given the
property "coded".
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Conclusions
from the
JMP output

From the above output, we make the following conclusions.

The R2 is reasonable for fitting "Uniformity" (well known to be a hard response to model).●   

The lack of fit test does not have a problem with the model (very small "Prob > F " would
question the model).

●   

The residual plot does not reveal any major violations of the underlying assumptions.●   

The normal plot of main effects and interaction effects provides a visual confirmation of
the significant model terms.

●   

The interaction plot shows why an interaction term is needed (parallel lines would suggest
no interaction).

●   

Plot of the
residuals
versus run
order

We next perform a residuals analysis to validate the model. We first generate a plot of the
residuals versus run order.

Normal plot,
box plot, and
histogram of
the residuals

Next we generate a normal plot, a box plot, and a histogram of the residuals.
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Viewing the above plots of the residuals does not show any reason to question the model.

Fitting a Model to the "Stress" Response, Simplifying the Model and Checking Residuals

Model
specification
screen and
stepwise
regression
(starting
from a full
second-order
model)
output

We start with the model specification screen in which we input factors and responses and choose
the model we want to fit. This time the "Stress" response will be modeled. We start with a full
second-order model and select a "Stepwise Fit". We set "prob" to 0.10 and direction to "Mixed"
and then "Go".
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The stepwise routine finds the intercept, the main effects, and Pressure squared to be signficant
terms.
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JMP output
for analyzing
the model
selected by
the stepwise
regression
for the Stress
response

The following is the JMP analysis using the model selected by the stepwise regression, which
contains four significant terms, in the previous step. The model is fit using coded factors, since
the factor columns were given the property "coded".
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Conclusions
from the
JMP output

From the above output, we make the following conclusions.

The R2 is very good for fitting "Stress".●   

The lack of fit test does not have a problem with the model (very small "Prob > F " would
question the model).

●   

The residual plot does not reveal any major violations of the underlying assumptions.●   

The interaction plot shows why an interaction term is needed (parallel lines would suggest
no interaction).

●   

Plot of the
residuals
versus run
order

We next perform a residuals analysis to validate the model. We first generate a plot of the
residuals versus run order.

Normal plot,
box plot, and
histogram of
the residuals

Next we generate a normal plot, a box plot, and a histogram of the residuals.

5.4.7.3. Response surface model example
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Viewing the above plots of the residuals does not show any reason to question the model.

Response Surface Contours for Both Responses

"Contour
Profiler" and
"Prediction
Profiler"

JMP has a "Contour Profiler" and "Prediction Profiler" that visually and interactively show how
the responses vary as a function of the input factors. These plots are shown here for both the
Uniformity and the Stress response.

5.4.7.3. Response surface model example
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Prediction Profiles Desirability Functions for Both Responses

Desirability
function:
Pressure
should be as
high as
possible and
H2/WF6 as
low as
possible

You can graphically construct a desirability function and let JMP find the factor settings that
maximize it - here it suggests that Pressure should be as high as possible and H2/WF6 as low as
possible.

5.4.7.3. Response surface model example
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Summary

Final
response
surface
models

The response surface models fit to (coded) "Uniformity" and "Stress" were:

Uniformity = 5.93 - 1.91*Pressure - 0.22*H2/WF6 + 1.70*Pressure*H2/WF6

Stress = 7.73 + 0.74*Pressure + 0.50*H2/WF6 - 0.49*Pressure2

Trade-offs
are often
needed for
multiple
responses

These models and the corresponding profiler plots show that trade-offs have to be made when
trying to achieve low values for both "Uniformity" and "Stress" since a high value of "Pressure"
is good for "Uniformity" while a low value of "Pressure" is good for "Stress". While low values
of H2/WF6 are good for both responses, the situation is further complicated by the fact that the
"Peeling" response (not considered in this analysis) was unacceptable for values of H2/WF6
below approximately 5.

"Uniformity"
was chosen
as more
important

In this case, the experimenters chose to focus on optimizing "Uniformity" while keeping H2/WF6
at 5. That meant setting "Pressure" at 80 torr.

5.4.7.3. Response surface model example
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Confirmation
runs
validated the
model
projections

A set of 16 verification runs at the chosen conditions confirmed that all goals, except those for the
"Stress" response, were met by this set of process settings.

5.4.7.3. Response surface model example
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5. Process Improvement

5.5.Advanced topics

Contents of
"Advanced
Topics"
section

This section builds on the basics of DOE described in the preceding
sections by adding brief or survey descriptions of a selection of useful
techniques. Subjects covered are:

When classical designs don't work1.  

Computer-aided designs

D-Optimal designs1.  

Repairing a design2.  

2.  

Optimizing a Process

Single response case

Path of steepest ascent1.  

Confidence region for search path2.  

Choosing the step length3.  

Optimization when there is adequate quadratic fit4.  

Effect of sampling error on optimal solution5.  

Optimization subject to experimental region
constraints

6.  

1.  

Multiple response case

Path of steepest ascent1.  

Desirability function approach2.  

Mathematical programming approach3.  

2.  

3.  

Mixture designs

Mixture screening designs1.  

Simplex-lattice designs2.  

Simplex-Centroid designs3.  

Constrained mixture designs4.  

Treating mixture and process variables together5.  

4.  

Nested variation5.  

5.5. Advanced topics
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Taguchi designs6.  

John's 3/4 fractional factorial designs7.  

Small composite designs8.  

An EDA approach to experimental design

Ordered data plot1.  

Dex scatter plot2.  

Dex mean plot3.  

Interaction effects matrix plot4.  

Block plot5.  

DEX Youden plot6.  

|Effects| plot7.  

Half-normal probability plot8.  

Cumulative residual standard deviation plot9.  

DEX contour plot10.  

9.  

5.5. Advanced topics
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5. Process Improvement
5.5. Advanced topics

5.5.1.What if classical designs don't work?

Reasons
designs
don't work

Most experimental situations call for standard designs that can be
constructed with many statistical software packages. Standard designs
have assured degrees of precision, orthogonality, and other optimal
properties that are important for the exploratory nature of most
experiments. In some situations, however, standard designs are not
appropriate or are impractical. These may include situations where

The required blocking structure or blocking size of the
experimental situation does not fit into a standard blocked design

1.  

Not all combinations of the factor settings are feasible, or for
some other reason the region of experimentation is constrained or
irregularly shaped.

2.  

A classical design needs to be 'repaired'. This can happen due to
improper planning with the original design treatment
combinations containing forbidden or unreachable combinations
that were not considered before the design was generated.

3.  

A nonlinear model is appropriate.4.  

A quadratic or response surface design is required in the presence
of qualitative factors.

5.  

The factors in the experiment include both components of a
mixture and other process variables.

6.  

There are multiple sources of variation leading to nested or
hierarchical data structures and restrictions on what can be
randomized.

7.  

A standard fractional factorial design requires too many treatment
combinations for the given amount of time and/or resources.

8.  

Computer-
aided
designs

When situations such as the above exist, computer-aided designs are a
useful option. In some situations, computer-aided designs are the only
option an experimenter has.

5.5.1. What if classical designs don't work?
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5. Process Improvement
5.5. Advanced topics

5.5.2.What is a computer-aided design?

Computer-aided
designs are
generated by a
computer
algorithm and
constructed to be
optimal for
certain models
according to one
of many types of
optimality
criteria

Designs generated from a computer algorithm are referred to as
computer-aided designs. Computer-aided designs are experimental
designs that are generated based on a particular optimality criterion
and are generally 'optimal' only for a specified model. As a result,
they are sometimes referred to as optimal designs and generally do
not satisfy the desirable properties such as independence among
the estimators that standard classical designs do. The design
treatment runs that are generated by the algorithms are chosen
from an overall candidate set of possible treatment combinations.
The candidate set consists of all the possible treatment
combinations that one wishes to consider in an experiment.

Optimality
critieria

There are various forms of optimality criteria that are used to select
the points for a design.

D-Optimality One popular criterion is D-optimality, which seeks to maximize
|X'X|, the determinant of the information matrix X'X of the design.
This criterion results in minimizing the generalized variance of the
parameter estimates based on a pre-specified model.

A-Optimality Another criterion is A-optimality, which seeks to minimize the
trace of the inverse of the information matrix. This criterion results
in minimizing the average variance of the parameter estimates
based on a pre-specified model.

G-Optimality A third criterion is G-optimality, which seeks to minimize the
maximum prediction variance, i.e., minimize max. [d=x'(X'X)-1x],
over a specified set of design points.

V-Optimality A fourth criterion is V-optimality, which seeks to minimize the
average prediction variance over a specified set of design points.

5.5.2. What is a computer-aided design?
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Optimality of a
given design is
model dependent

Since the optimality criterion of most computer-aided designs is
based on some function of the information matrix, the 'optimality'
of a given design is model dependent. That is, the experimenter
must specify a model for the design and the final number of design
points desired before the 'optimal' design' can be generated. The
design generated by the computer algorithm is 'optimal' only for
that model.

5.5.2. What is a computer-aided design?
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5. Process Improvement
5.5. Advanced topics
5.5.2. What is a computer-aided design?

5.5.2.1.D-Optimal designs

D-optimal
designs are
often used
when
classical
designs do
not apply or
work

D-optimal designs are one form of design provided by a computer
algorithm. These types of computer-aided designs are particularly
useful when classical designs do not apply.

Unlike standard classical designs such as factorials and fractional
factorials, D-optimal design matrices are usually not orthogonal and
effect estimates are correlated.

These designs
are always
an option
regardless of
model or
resolution
desired

These types of designs are always an option regardless of the type of
model the experimenter wishes to fit (for example, first order, first
order plus some interactions, full quadratic, cubic, etc.) or the objective
specified for the experiment (for example, screening, response surface,
etc.). D-optimal designs are straight optimizations based on a chosen
optimality criterion and the model that will be fit. The optimality
criterion used in generating D-optimal designs is one of maximizing
|X'X|, the determinant of the information matrix X'X.

You start
with a
candidate set
of runs and
the algorithm
chooses a
D-optimal set
of design
runs

This optimality criterion results in minimizing the generalized variance
of the parameter estimates for a pre-specified model. As a result, the
'optimality' of a given D-optimal design is model dependent. That is,
the experimenter must specify a model for the design before a
computer can generate the specific treatment combinations. Given the
total number of treatment runs for an experiment and a specified
model, the computer algorithm chooses the optimal set of design runs
from a candidate set of possible design treatment runs. This candidate
set of treatment runs usually consists of all possible combinations of
various factor levels that one wishes to use in the experiment.

In other words, the candidate set is a collection of treatment
combinations from which the D-optimal algorithm chooses the
treatment combinations to include in the design. The computer
algorithm generally uses a stepping and exchanging process to select

5.5.2.1. D-Optimal designs
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the set of treatment runs.

No guarantee Note: There is no guarantee that the design the computer generates is
actually D-optimal.

D-optimal
designs are
particularly
useful when
resources are
limited or
there are
constraints
on factor
settings

The reasons for using D-optimal designs instead of standard classical
designs generally fall into two categories:

standard factorial or fractional factorial designs require too many
runs for the amount of resources or time allowed for the
experiment

1.  

the design space is constrained (the process space contains factor
settings that are not feasible or are impossible to run).

2.  

Industrial
example
demostrated
with JMP
software

Industrial examples of these two situations are given below and the
process flow of how to generate and analyze these types of designs is
also given. The software package used to demonstrate this is JMP
version 3.2. The flow presented below in generating the design is the
flow that is specified in the JMP Help screens under its D-optimal
platform.

Example of
D-optimal
design:
problem
setup

Suppose there are 3 design variables (k = 3) and engineering judgment
specifies the following model as appropriate for the process under
investigation

The levels being considered by the researcher are (coded)

X1: 5 levels (-1, -0.5, 0, 0.5, 1)
X2: 2 levels (-1, 1)
X3: 2 levels (-1, 1)

One design objective, due to resource limitations, is to use n = 12
design points.

5.5.2.1. D-Optimal designs
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Create the
candidate set

Given the above experimental specifications, the first thing to do
toward generating the design is to create the candidate set. The
candidate set is a data table with a row for each point (run) you want
considered for your design. This is often a full factorial. You can create
a candidate set in JMP by using the Full Factorial design given by the
Design Experiment command in the Tables menu. The candidate set
for this example is shown below. Since the candidate set is a full
factorial in all factors, the candidate set contains (5)*(2)*(2) = 20
possible design runs.

Table
containing
the candidate
set

TABLE 5.1  Candidate Set for Variables X1, X2, X3
X1 X2 X3
-1 -1 -1
-1 -1 +1
-1 +1 -1
-1 +1 +1

-0.5 -1 -1
-0.5 -1 +1
-0.5 +1 -1
-0.5 +1 +1

0 -1 -1
0 -1 +1
0 +1 -1
0 +1 +1

0.5 -1 -1
0.5 -1 +1
0.5 +1 -1
0.5 +1 +1
+1 -1 -1
+1 -1 +1
+1 +1 -1
+1 +1 +1

5.5.2.1. D-Optimal designs
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Specify (and
run) the
model in the
Fit Model
dialog

Once the candidate set has been created, specify the model you want in
the Fit Model dialog. Do not give a response term for the model! Select
D-Optimal as the fitting personality in the pop-up menu at the bottom
of the dialog. Click Run Model and use the control panel that appears.
Enter the number of runs you want in your design (N=12 in this
example). You can also edit other options available in the control
panel. This control panel and the editable options are shown in the
table below. These other options refer to the number of points chosen
at random at the start of an excursion or trip (N Random), the number
of worst points at each K-exchange step or iteration (K-value), and the
number of times to repeat the search (Trips). Click Go.

For this example, the table below shows how these options were set
and the reported efficiency values are relative to the best design found.

Table
showing JMP
D-optimal
control panel
and efficiency
report

D-Optimal Control Panel
Optimal Design Controls

N Desired 12
N Random 3
K Value 2
Trips 3
  
Best Design  
  
D-efficiency 68.2558
A-efficiency 45.4545
G-efficiency 100
AvgPredSE 0.6233
N 12.0000

The
algorithm
computes
efficiency
numbers to
zero in on a
D-optimal
design

The four line efficiency report given after each search shows the best
design over all the excursions (trips). D-efficiency is the objective,
which is a volume criterion on the generalized variance of the
estimates. The efficiency of the standard fractional factorial is 100%,
but this is not possible when pure quadratic terms such as (X1)2 are
included in the model.

The efficiency values are a function of the number of points in the
design, the number of independent variables in the model, and the
maximum standard error for prediction over the design points. The best
design is the one with the highest D-efficiency. The A-efficiencies and
G-efficiencies help choose an optimal design when multiple excursions
produce alternatives with similar D-efficiency.

5.5.2.1. D-Optimal designs
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Using several
excursions
(or trips)
recommended

The search for a D-optimal design should be made using several
excursions or trips. In each trip, JMP 3.2 chooses a different set of
random seed points, which can possibly lead to different designs. The
Save button saves the best design found. The standard error of
prediction is also saved under the variable OptStdPred in the table.

The selected
design should
be
randomized

The D-optimal design using 12 runs that JMP 3.2 created is listed
below in standard order. The design runs should be randomized before
the treatment combinations are executed.

Table
showing the
D-optimal
design
selected by
the JMP
software

TABLE 5.2  Final D-optimal Design
X1 X2 X3 OptStdPred

-1 -1 -1 0.645497
-1 -1 +1 0.645497
-1 +1 -1 0.645497
-1 +1 +1 0.645497
 0 -1 -1 0.645497
 0 -1 +1 0.645497
 0 +1 -1 0.645497
 0 +1 +1 0.645497
+1 -1 -1 0.645497
+1 -1 +1 0.645497
+1 +1 -1 0.645497
+1 +1 +1 0.645497

Parameter
estimates are
usually
correlated

To see the correlations of the parameter estimates for the best design
found, you can click on the Correlations button in the D-optimal
Search Control Panel. In most D-optimal designs, the correlations
among the estimates are non-zero. However, in this particular example,
the correlations are zero.

Other
software may
generate a
different
D-optimal
design

Note: Other software packages (or even other releases of JMP) may
have different procedures for generating D-optimal designs - the above
example is a highly software dependent illustration of how to generate
a D-optimal design.

5.5.2.1. D-Optimal designs
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5. Process Improvement
5.5. Advanced topics
5.5.2. What is a computer-aided design?

5.5.2.2.Repairing a design

Repair or
augment
classical
designs

Computer-aided designs are helpful in either repairing or augmenting a
current experimental design. They can be used to repair a 'broken'
standard classical design.

Original
design
matrix may
contain runs
that were
lost or
impossible
to acieve

There may be situations in which, due to improper planning or other
issues, the original design matrix contains forbidden or unreachable
combinations of the factor settings. A computer-aided design (for
example a D-optimal design) can be used to 'replace' those runs from the
original design that were unattainable. The runs from the original design
that are attainable are labeled as 'inclusion' runs and will be included in
the final computer-aided design.

Computer-
aided design
can
generate
additional
attainable
runs

Given a pre-specified model, the computer-aided design can generate
the additional attainable runs that are necessary in order to estimate the
model of interest. As a result, the computer-aided design is just
replacing those runs in the original design that were unattainable with a
new set of runs that are attainable, and which still allows the
experimenter to obtain information regarding the factors from the
experiment.

Properties
of this final
design may
not compare
with those of
the original
design

The properties of this final design will probably not compare with those
of the original design and there may exist some correlation among the
estimates. However, instead of not being able to use any of the data for
analysis, generating the replacement runs from a computer-aided design,
a D-optimal design for example, allows one to analyze the data.
Furthermore, computer-aided designs can be used to augment a classical
design with treatment combinations that will break alias chains among
the terms in the model or permit the estimation of curvilinear effects.

5.5.2.2. Repairing a design
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5. Process Improvement
5.5. Advanced topics

5.5.3.How do you optimize a process?

How do you determine the optimal region to run a
process?

Often the
primary
DOE goal is
to find the
operating
conditions
that
maximize (or
minimize)
the system
responses

The optimal region to run a process is usually determined after a
sequence of experiments has been conducted and a series of empirical
models obtained. In many engineering and science applications,
experiments are conducted and empirical models are developed with the
objective of improving the responses of interest. From a mathematical
point of view, the objective is to find the operating conditions (or factor
levels) X1, X2, ..., Xk that maximize or minimize the r system response
variables Y1, Y2, ..., Yr. In experimental optimization, different
optimization techniques are applied to the fitted response equations

. Provided that the fitted equations approximate

adequately the true (unknown) system responses, the optimal operating
conditions of the model will be "close" to the optimal operating
conditions of the true system.

The DOE
approach to
optimization

The experimental optimization of response surface models differs from
classical optimization techniques in at least three ways:

Find
approximate
(good)
models and
iteratively
search for
(near)
optimal
operating
conditions

Experimental optimization is an iterative process; that is,
experiments conducted in one set of experiments result in fitted
models that indicate where to search for improved operating
conditions in the next set of experiments. Thus, the coefficients in
the fitted equations (or the form of the fitted equations) may
change during the optimization process. This is in contrast to
classical optimization in which the functions to optimize are
supposed to be fixed and given.

1.  

5.5.3. How do you optimize a process?
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Randomness
(sampling
variability)
affects the
final
answers and
should be
taken into
account

The response models are fit from experimental data that usually
contain random variability due to uncontrollable or unknown
causes. This implies that an experiment, if repeated, will result in
a different fitted response surface model that might lead to
different optimal operating conditions. Therefore, sampling
variability should be considered in experimental optimization.

In contrast, in classical optimization techniques the functions are
deterministic and given.

2.  

Optimization
process
requires
input of the
experimenter

The fitted responses are local approximations, implying that the
optimization process requires the input of the experimenter (a
person familiar with the process). This is in contrast with
classical optimization which is always automated in the form of
some computer algorithm.

3.  

5.5.3. How do you optimize a process?
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?

5.5.3.1.Single response case

Optimizing
of a single
response
usually
starts with
line
searches in
the direction
of maximum
improvement

The experimental optimization of a single response is usually conducted in two phases or steps,
following the advice of Box and Wilson. The first phase consists of a sequence of line searches in
the direction of maximum improvement. Each search in the sequence is continued until there is
evidence that the direction chosen does not result in further improvements. The sequence of line
searches is performed as long as there is no evidence of lack of fit for a simple first-order model
of the form

If there is
lack of fit for
linear
models,
quadratic
models are
tried next

The second phase is performed when there is lack of linear fit in Phase I, and instead, a
second-order or quadratic polynomial regression model of the general form

is fit. Not all responses will require quadratic fit, and in such cases Phase I is stopped when the
response of interest cannot be improved any further. Each phase is explained and illustrated in the
next few sections.

"Flowchart"
for two
phases of
experimental
optimization

The following is a flow chart showing the two phases of experimental optimization.

FIGURE 5.1: The Two Phases of Experimental Optimization

5.5.3.1. Single response case
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.1.Single response: Path of steepest ascent

Starting at
the current
operating
conditions, fit
a linear
model

If experimentation is initially performed in a new, poorly understood production process,
chances are that the initial operating conditions X1, X2, ...,Xk are located far from the region
where the factors achieve a maximum or minimum for the response of interest, Y. A first-order
model will serve as a good local approximation in a small region close to the initial operating
conditions and far from where the process exhibits curvature. Therefore, it makes sense to fit a
simple first-order (or linear polynomial) model of the form:

Experimental strategies for fitting this type of model were discussed earlier. Usually, a 2k-p

fractional factorial experiment is conducted with repeated runs at the current operating
conditions (which serve as the origin of coordinates in orthogonally coded factors).

Determine the
directions of
steepest
ascent and
continue
experimenting
until no
further
improvement
occurs - then
iterate the
process

The idea behind "Phase I" is to keep experimenting along the direction of steepest ascent (or
descent, as required) until there is no further improvement in the response. At that point, a new
fractional factorial experiment with center runs is conducted to determine a new search

direction. This process is repeated until at some point significant curvature in  is detected.
This implies that the operating conditions X1, X2, ...,Xk are close to where the maximum (or
minimum, as required) of Y occurs. When significant curvature, or lack of fit, is detected, the
experimenter should proceed with "Phase II". Figure 5.2 illustrates a sequence of line searches
when seeking a region where curvature exists in a problem with 2 factors (i.e., k=2).

FIGURE 5.2: A Sequence of Line Searches for a 2-Factor Optimization Problem

5.5.3.1.1. Single response: Path of steepest ascent
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Two main
decisions:
search
direction and
length of step

There are two main decisions an engineer must make in Phase I:

determine the search direction;1.  

determine the length of the step to move from the current operating conditions.2.  

Figure 5.3 shows a flow diagram of the different iterative tasks required in Phase I. This
diagram is intended as a guideline and should not be automated in such a way that the
experimenter has no input in the optimization process.

Flow chart of
iterative
search
process

FIGURE 5.3: Flow Chart for the First Phase of the Experimental Optimization
Procedure

5.5.3.1.1. Single response: Path of steepest ascent
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Procedure for Finding the Direction of Maximum Improvement

The direction
of steepest
ascent is
determined by
the gradient
of the fitted
model

Suppose a first-order model (like above) has been fit and provides a useful approximation. As
long as lack of fit (due to pure quadratic curvature and interactions) is very small compared to
the main effects, steepest ascent can be attempted. To determine the direction of maximum
improvement we use

the estimated direction of steepest ascent, given by the gradient of , if the objective is
to maximize Y;

1.  

the estimated direction of steepest descent, given by the negative of the gradient of , if
the objective is to minimize Y.

2.  

The direction
of steepest
ascent
depends on
the scaling
convention -
equal
variance
scaling is
recommended

The direction of the gradient, g, is given by the values of the parameter estimates, that is, g' =
(b1, b2, ..., bk). Since the parameter estimates b1, b2, ..., bk depend on the scaling convention for
the factors, the steepest ascent (descent) direction is also scale dependent. That is, two
experimenters using different scaling conventions will follow different paths for process
improvement. This does not diminish the general validity of the method since the region of the
search, as given by the signs of the parameter estimates, does not change with scale. An equal
variance scaling convention, however, is recommended. The coded factors xi, in terms of the
factors in the original units of measurement, Xi, are obtained from the relation

This coding convention is recommended since it provides parameter estimates that are scale
independent, generally leading to a more reliable search direction. The coordinates of the factor
settings in the direction of steepest ascent, positioned a distance  from the origin, are given

by:

Solution is a
simple
equation

This problem can be solved with the aid of an optimization solver (e.g., like the solver option
of a spreadsheet). However, in this case this is not really needed, as the solution is a simple
equation that yields the coordinates

Equation can
be computed
for increasing
values of 

An engineer can compute this equation for different increasing values of  and obtain different

factor settings, all on the steepest ascent direction.

To see the details that explain this equation, see Technical Appendix 5A.

Example: Optimization of a Chemical Process

5.5.3.1.1. Single response: Path of steepest ascent

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5311.htm (3 of 6) [7/1/2003 4:16:19 PM]



Optimization
by search
example

It has been concluded (perhaps after a factor screening experiment) that the yield (Y, in %) of a
chemical process is mainly affected by the temperature (X1, in C) and by the reaction time
(X2, in minutes). Due to safety reasons, the region of operation is limited to

Factor levels The process is currently run at a temperature of 200 C and a reaction time of 200 minutes. A
process engineer decides to run a 22 full factorial experiment with factor levels at

factor low center high

X1 170 200 230

X2 150 200 250

Orthogonally
coded factors

Five repeated runs at the center levels are conducted to assess lack of fit. The orthogonally
coded factors are

Experimental
results

The experimental results were:

x1 x2 X1 X2 Y (= yield)

-1 -1 170 150 32.79
+1 -1 230 150 24.07
-1 +1 170 250 48.94
+1 +1 230 250 52.49
  0   0 200 200 38.89
  0   0 200 200 48.29
  0   0 200 200 29.68
  0   0 200 200 46.50
  0   0 200 200 44.15

ANOVA table The corresponding ANOVA table for a first-order polynomial model, obtained using the
DESIGN EASE statistical software, is

                 SUM OF        MEAN    F
SOURCE          SQUARES   DF  SQUARE  VALUE  PROB>F

MODEL          503.3035   2  251.6517 4.810  0.0684
CURVATURE        8.1536   1    8.1536 0.1558 0.7093
RESIDUAL       261.5935   5   52.3187
  LACK OF FIT   37.6382   1   37.6382 0.6722 0.4583
  PURE ERROR   223.9553   4   55.9888

COR TOTAL      773.0506   8

5.5.3.1.1. Single response: Path of steepest ascent
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Resulting
model

It can be seen from the ANOVA table that there is no significant lack of linear fit due to an
interaction term and there is no evidence of curvature. Furthermore, there is evidence that the
first-order model is significant. Using the DESIGN EXPERT statistical software, we obtain the
resulting model (in the coded variables) as

Diagnostic
checks

The usual diagnostic checks show conformance to the regression assumptions, although the R2

value is not very high: R2 = 0.6580.

Determine
level of
factors for
next run
using
direction of
steepest
ascent

To maximize , we use the direction of steepest ascent. The engineer selects  = 1 since a

point on the steepest ascent direction one unit (in the coded units) from the origin is desired.
Then from the equation above for the predicted Y response, the coordinates of the factor levels
for the next run are given by:

and

This means that to improve the process, for every (-0.1152)(30) = -3.456 C that temperature is
varied (decreased), the reaction time should be varied by (0.9933(50) = 49.66 minutes.

===========================================================

Technical Appendix 5A: finding the factor settings on the steepest ascent direction a
specified distance from the origin

Details of
how to
determine the
path of
steepest
ascent

The problem of finding the factor settings on the steepest ascent/descent direction that are
located a distance  from the origin is given by the optimization problem,

5.5.3.1.1. Single response: Path of steepest ascent
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Solve using a
Lagrange
multiplier
approach

To solve it, use a Lagrange multiplier approach. First, add a penalty  for solutions not
satisfying the constraint (since we want a direction of steepest ascent, we maximize, and
therefore the penalty is negative). For steepest descent we minimize and the penalty term is
added instead.

Compute the partials and equate them to zero

Solve two
equations in
two unknowns

These two equations have two unknowns (the vector x and the scalar ) and thus can be solved
yielding the desired solution:

or, in non-vector notation:

Multiples of
the direction
of the
gradient

From this equation we can see that any multiple  of the direction of the gradient (given by

) will lead to points on the steepest ascent direction. For steepest descent, use instead

-bi in the numerator of the equation above.

5.5.3.1.1. Single response: Path of steepest ascent
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.2.Single response: Confidence region for search
path

"Randomness"
means that the
steepest
ascent
direction is
just an
estimate and it
is possible to
construct a
confidence
"cone' around
this direction
estimate

The direction given by the gradient g' = (b0, b2, ... , bk) constitutes only a single (point) estimate
based on a sample of N runs. If a different set of N runs were conducted, these would provide
different parameter estimates, which in turn would give a different gradient. To account for this
sampling variability, Box and Draper gave a formula for constructing a "cone" around the
direction of steepest ascent that with certain probability contains the true (unknown) system

gradient given by . The width of the confidence cone is useful to assess how

reliable an estimated search direction is.

Figure 5.4 shows such a cone for the steepest ascent direction in an experiment with two factors.
If the cone is so wide that almost every possible direction is inside the cone, an experimenter
should be very careful in moving too far from the current operating conditions along the path of
steepest ascent or descent. Usually this will happen when the linear fit is quite poor (i.e., when the
R2 value is low). Thus, plotting the confidence cone is not so important as computing its width.

If you are interested in the details on how to compute such a cone (and its width), see Technical
Appendix 5B.

Graph of a
confidence
cone for the
steepest
ascent
direction

5.5.3.1.2. Single response: Confidence region for search path
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FIGURE 5.4: A Confidence Cone for the Steepest Ascent Direction in an Experiment with 2
Factors

=============================================================

Technical Appendix 5B: Computing a Confidence Cone on the Direction of Steepest Ascent

Details of how
to construct a
confidence
cone for the
direction of
steepest
ascent

Suppose the response of interest is adequately described by a first-order polynomial model.
Consider the inequality

with

Cjj is the j-th diagonal element of the matrix (X'X)-1 (for j = 1, ..., k these values are all equal if

the experimental design is a 2k-p factorial of at least Resolution III), and X is the model matrix of
the experiment (including columns for the intercept and second-order terms, if any). Any
operating condition with coordinates x' = (x1, x2, ..., xk) that satisfies this inequality generates a
direction that lies within the 100(1- )% confidence cone of steepest ascent if

5.5.3.1.2. Single response: Confidence region for search path
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or inside the 100(1- )% confidence cone of steepest descent if&

Inequality
defines a cone

The inequality defines a cone with the apex at the origin and center line located along the gradient

of .

A measure of
goodnes of fit:

A measure of "goodness" of a search direction is given by the fraction of directions excluded by
the 100(1- )% confidence cone around the steepest ascent/descent direction (see Box and
Draper, 1987) which is given by:

with Tk-1() denoting the complement of the Student's-t distribution function with k-1 degrees of
freedom (that is, Tk-1(x) = P(tk-1  x)) and F , k-1, n-p denotes an  percentage point of the F
distribution with k-1 and n-p degrees of freedom, with n-p denoting the error degrees of freedom.
The value of  represents the fraction of directions included by the confidence cone. The

smaller  is, the wider the cone is, with . Note that the inequality equation and the

"goodness measure" equation are valid when operating conditions are given in coded units.

Example: Computing 

Compute 
from ANOVA
table and Cjj

From the ANOVA table in the chemical experiment discussed earlier

 = (52.3187)(1/4) = 13.0796

since Cjj = 1/4 (j=2,3) for a 22 factorial. The fraction of directions excluded by a 95% confidence
cone in the direction of steepest ascent is:

Compute 

Conclusions
for this
example

since F0.05,1,6 = 5.99. Thus 71.05% of the possible directions from the current operating point are
excluded with 95% confidence. This is useful information that can be used to select a step length.
The smaller  is, the shorter the step should be, as the steepest ascent direction is less reliable. In

this example, with high confidence, the true steepest ascent direction is within this cone of 29%
of possible directions. For k=2, 29% of 360o = 104.4o, so we are 95% confident that our estimated
steepest ascent path is within plus or minus 52.2o of the true steepest path. In this case, we should
not use a large step along the estimated steepest ascent path.

5.5.3.1.2. Single response: Confidence region for search path
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.3.Single response: Choosing the step
length

A procedure
for choosing
how far
along the
direction of
steepest
ascent to go
for the next
trial run

Once the search direction is determined, the second decision needed in Phase I
relates to how far in that direction the process should be "moved". The most
common procedure for selecting a step length is based on choosing a step size in
one factor and then computing step lengths in the other factors proportional to their
parameter estimates. This provides a point on the direction of maximum
improvement. The procedure is given below. A similar approach is obtained by
choosing increasing values of  in

.

However, the procedure below considers the original units of measurement which
are easier to deal with than the coded "distance" .

Procedure: selection of step length

Procedure
for selecting
the step
length

The following is the procedure for selecting the step length.

Choose a step length Xj (in natural units of measurement) for some factor
j. Usually, factor j is chosen to be the one engineers feel more comfortable
varying, or the one with the largest |bj|. The value of Xj can be based on
the width of the confidence cone around the steepest ascent/descent
direction. Very wide cones indicate that the estimated steepest ascent/descent
direction is not reliable, and thus Xj should be small. This usually occurs

when the R2 value is low. In such a case, additional experiments can be
conducted in the current experimental region to obtain a better model fit and
a better search direction.

1.  

Transform to coded units:2.  

5.5.3.1.3. Single response: Choosing the step length
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with sj denoting the scale factor used for factor j (e.g., sj = rangej/2).

Set  for all other factors i.3.  

Transform all the xi's to natural units: Xi = ( xi)(si).4.  

Example: Step Length Selection.

An example
of step
length
selection

The following is an example of the step length selection procedure.

For the chemical process experiment described previously, the process
engineer selected X2 = 50 minutes. This was based on process engineering
considerations. It was also felt that X2 = 50 does not move the process too
far away from the current region of experimentation. This was desired since
the R2 value of 0.6580 for the fitted model is quite low, providing a not very
reliable steepest ascent direction (and a wide confidence cone, see Technical
Appendix 5B).

●   

.●   

.●   

X2 = (-0.1160)(30) = -3.48oC.●   

Thus the step size is X' = (-3.48oC, 50 minutes).

Procedure: Conducting Experiments Along the Direction of Maximum
Improvement

Procedure
for
conducting
experiments
along the
direction of
maximum
improvement

The following is the procedure for conducting experiments along the direction of
maximum improvement.

Given current operating conditions  = (X1, X2, ..., Xk) and a step size X'
= ( X1, X2, ..., Xk), perform experiments at factor levels X0 + X, X0
+ 2 X, X0 + 3 X, ... as long as improvement in the response Y (decrease or
increase, as desired) is observed.

1.  

Once a point has been reached where there is no further improvement, a new
first-order experiment (e.g., a 2k-p fractional factorial) should be performed
with repeated center runs to assess lack of fit. If there is no significant
evidence of lack of fit, the new first-order model will provide a new search
direction, and another iteration is performed as indicated in Figure 5.3.
Otherwise (there is evidence of lack of fit), the experimental design is
augmented and a second-order model should be fitted. That is, the
experimenter should proceed to "Phase II".

2.  

5.5.3.1.3. Single response: Choosing the step length
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Example: Experimenting Along the Direction of Maximum Improvement

Step 1:
increase
factor levels
by 

Step 1:

Given X0 = (200oC, 200 minutes) and X = (-3.48oC, 50 minutes), the next
experiments were performed as follows (the step size in temperature was rounded
to -3.5oC for practical reasons):

 X1 X2 x1 x2 Y (= yield)

X0 200 200 0 0  

X0 + X 196.5 250 -0.1160 1 56.2

X0 + 2 X 193.0 300 -0.2320 2 71.49

X0 + 3 X 189.5 350 -0.3480 3 75.63

X0 + 4 X 186.0 400 -0.4640 4 72.31

X0 + 5 X 182.5 450 -0.5800 5 72.10

Since the goal is to maximize Y, the point of maximum observed response is X1 =

189.5oC, X2 = 350 minutes. Notice that the search was stopped after 2 consecutive
drops in response, to assure that we have passed by the "peak" of the "hill".

Step 2: new
factorial
experiment

Step 2:

A new 22 factorial experiment is performed with X' = (189.5, 350) as the origin.
Using the same scaling factors as before, the new scaled controllable factors are:

Five center runs (at X1 = 189.5, X2 = 350) were repeated to assess lack of fit. The
experimental results were:

x1 x2 X1 X2 Y (= yield)

-1 -1 159.5 300 64.33
+1 -1 219.5 300 51.78
-1 +1 159.5 400 77.30
+1 +1 219.5 400 45.37
0 0 189.5 350 62.08
0 0 189.5 350 79.36
0 0 189.5 350 75.29
0 0 189.5 350 73.81
0 0 189.5 350 69.45

The corresponding ANOVA table for a linear model, obtained using the

5.5.3.1.3. Single response: Choosing the step length
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DESIGN-EASE statistical software, is

                SUM OF            MEAN     F
SOURCE         SQUARES    DF     SQUARE  VALUE  PROB > F

MODEL          505.300     2    252.650  4.731   0.0703
CURVATURE      336.309     1    336.309  6.297   0.0539
RESIDUAL       267.036     5     53.407
  LACK OF FIT   93.857     1     93.857  2.168   0.2149
  PURE ERROR   173.179     4     43.295

COR TOTAL     1108.646     8

From the table, the linear effects (model) is significant and there is no evidence of
lack of fit. However, there is a significant curvature effect (at the 5.4% significance
level), which implies that the optimization should proceed with Phase II; that is, the
fit and optimization of a second-order model.

5.5.3.1.3. Single response: Choosing the step length
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.4.Single response: Optimization when there is
adequate quadratic fit

Regions
where
quadratic
models or
even cubic
models are
needed occur
in many
instances in
industry

After a few steepest ascent (or descent) searches, a first-order model will eventually lead to no
further improvement or it will exhibit lack of fit. The latter case typically occurs when operating
conditions have been changed to a region where there are quadratic (second-order) effects present
in the response. A second-order polynomial can be used as a local approximation of the response
in a small region where, hopefully, optimal operating conditions exist. However, while a
quadratic fit is appropriate in most of the cases in industry, there will be a few times when a
quadratic fit will not be sufficiently flexible to explain a given response. In such cases, the analyst
generally does one of the following:

Uses a transformation of Y or the Xi's to improve the fit.1.  

Limits use of the model to a smaller region in which the model does fit.2.  

Adds other terms to the model.3.  

Procedure: obtaining the estimated optimal operating conditions

Second-
order
polynomial
model

Once a linear model exhibits lack of fit or when significant curvature is detected, the experimental
design used in Phase I (recall that a 2k-p factorial experiment might be used) should be augmented
with axial runs on each factor to form what is called a central composite design. This
experimental design allows estimation of a second-order polynomial of the form

Steps to find
optimal
operating
conditions

If the corresponding analysis of variance table indicates no lack of fit for this model, the engineer
can proceed to determine the estimated optimal operating conditions.

Using some graphics software, obtain a contour plot of the fitted response. If the number of
factors (k) is greater than 2, then plot contours in all planes corresponding to all the
possible pairs of factors. For k greater than, say, 5, this could be too cumbersome (unless
the graphic software plots all pairs automatically). In such a case, a "canonical analysis" of
the surface is recommended (see Technical Appendix 5D).

1.  

Use an optimization solver to maximize or minimize (as desired) the estimated response .2.  

Perform a confirmation experiment at the estimated optimal operating conditions given by
the solver in step 2.

3.  

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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Illustrate with
DESIGN-
EXPERT
software

We illustrate these steps with the DESIGN-EXPERT software and our chemical experiment
discussed before. For a technical description of a formula that provides the coordinates of the
stationary point of the surface, see Technical Appendix 5C.

Example: Second Phase Optimization of Chemical Process

Experimental
results for
axial runs

Recall that in the chemical experiment, the ANOVA table, obtained from using an experiment run
around the coordinates X1 = 189.5, X2 = 350, indicated significant curvature effects. Augmenting

the 22 factorial experiment with axial runs at  to achieve a rotatable central

composite experimental design, the following experimental results were obtained:

x1 x2 X1 X2 Y (= yield)

-1.414 0 147.08 350 72.58
+1.414 0 231.92 350 37.42

0 -1.414 189.5 279.3 54.63
0 +1.414 189.5 420.7 54.18

ANOVA table The corresponding ANOVA table for the different effects, based on the sequential sum of squares
procedure of the DESIGN-EXPERT software, is

               SUM OF            MEAN      F
SOURCE        SQUARES   DF      SQUARE   VALUE  PROB > F

MEAN          51418.2    1     51418.2
Linear         1113.7    2       556.8    5.56    0.024
Quadratic       768.1    3       256.0    7.69    0.013
Cubic             9.9    2         5.0    0.11    0.897

RESIDUAL        223.1    5        44.6
TOTAL         53533.0   13

Lack of fit
tests and
auxillary
diagnostic
statistics

From the table, the linear and quadratic effects are significant. The lack of fit tests and auxiliary
diagnostic statistics are:

              SUM OF             MEAN      F
MODEL        SQUARES      DF    SQUARE   VALUE  PROB > F

Linear         827.9       6     138.0    3.19    0.141
Quadratic       59.9       3      20.0    0.46    0.725
Cubic           49.9       1      49.9     1.15   0.343

PURE ERROR     173.2       4      43.3

              ROOT                ADJ       PRED
SOURCE        MSE      R-SQR     R-SQR      R-SQR    PRESS

Linear       10.01    0.5266    0.4319     0.2425    1602.02

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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Quadratic     5.77    0.8898    0.8111     0.6708     696.25
Cubic         6.68    0.8945    0.7468    -0.6393    3466.71

The quadratic model has a larger p-value for the lack of fit test, higher adjusted R2, and a lower
PRESS statistic; thus it should provide a reliable model. The fitted quadratic equation, in coded
units, is

Step 1:

Contour plot
of the fitted
response
function

A contour plot of this function (Figure 5.5) shows that it appears to have a single optimum point
in the region of the experiment (this optimum is calculated below to be (-.9285,.3472), in coded
x1, x2 units, with a predicted response value of 77.59).

FIGURE 5.5: Contour Plot of the Fitted Response in the Example
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3D plot of the
fitted
response
function

Since there are only two factors in this example, we can also obtain a 3D plot of the fitted
response against the two factors (Figure 5.6).

FIGURE 5.6: 3D Plot of the Fitted Response in the Example

Step 2:

Optimization
point

The optimization routine in DESIGN-EXPERT was invoked for maximizing . The results are
 = 161.64oC,  = 367.32 minutes. The estimated yield at the optimal point is (X*) =

77.59%.

Step 3:

Confirmation
experiment

A confirmation experiment was conducted by the process engineer at settings X1 = 161.64, X2 =

367.32. The observed response was (X*) = 76.5%, which is satisfactorily close to the estimated
optimum.

==================================================================

Technical Appendix 5C: Finding the Factor Settings for the Stationary Point of a Quadratic
Response

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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Details of
how to find
the maximum
or minimum
point for a
quadratic
response

Rewrite the fitted equation using matrix notation as

with b' = (b1, b2, ..., bk) denoting a vector of first-order parameter estimates,

is a matrix of second-order parameter estimates and x' = (x1, x2, ..., xk) is the vector of
controllable factors. Notice that the off-diagonal elements of B are equal to half the
two-factor interaction coefficients.

1.  

Equating the partial derivatives of  with respect to x to zeroes and solving the resulting
system of equations, the coordinates of the stationary point of the response are given by

2.  

Nature of the
stationary
point is
determined by
B

The nature of the stationary point (whether it is a point of maximum response, minimum
response, or a saddle point) is determined by the matrix B. The two-factor interactions do not, in
general, let us "see" what type of point x* is. One thing that can be said is that if the diagonal
elements of B (the bii have mixed signs, x* is a saddle point. Otherwise, it is necessary to look at

the characteristic roots or eigenvalues of B to see whether B is "positive definite" (so x* is a point
of minimum response) or "negative definite" (the case in which x* is a point of maximum
response). This task is easier if the two-factor interactions are "eliminated" from the fitted
equation as is described in Technical Appendix 5D.

Example: computing the stationary point, Chemical Process experiment

Example of
computing the
stationary
point

The fitted quadratic equation in the chemical experiment discussed in Section 5.5.3.1.1 is, in
coded units,

from which we obtain b' = (-11.78, 0.74),

and

Transforming back to the original units of measurement, the coordinates of the stationary point
are

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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.

Notice this is the same solution as was obtained by using the optimization routine of
DESIGN-EXPERT (see section 5.5.3.1.1). The predicted response at the stationary point is (X*)
= 77.59%.

Technical Appendix 5D: "Canonical Analysis" of Quadratic Responses

Case for a
single
controllable
response

Whether the stationary point X* represents a point of maximum or minimum response, or is just a
saddle point, is determined by the matrix of second-order coefficients, B. In the simpler case of
just a single controllable factor (k=1), B is a scalar proportional to the second derivative of (x)
with respect to x. If d2 /dx2 is positive, recall from calculus that the function (x) is convex
("bowl shaped") and x* is a point of minimum response.

Case for
multiple
controllable
responses not
so easy

Unfortunately, the multiple factor case (k>1) is not so easy since the two-factor interactions (the
off-diagonal elements of B) obscure the picture of what is going on. A recommended procedure
for analyzing whether B is "positive definite" (we have a minimum) or "negative definite" (we
have a maximum) is to rotate the axes x1, x2, ..., xk so that the two-factor interactions disappear. It
is also customary (Box and Draper, 1987; Khuri and Cornell, 1987; Myers and Montgomery,
1995) to translate the origin of coordinates to the stationary point so that the intercept term is
eliminated from the equation of (x). This procedure is called the canonical analysis of (x).

Procedure: Canonical Analysis

Steps for
performing
the canonical
analysis

Define a new axis z = x - x* (translation step). The fitted equation becomes

.

1.  

Define a new axis w = E'z, with E'BE = D and D a diagonal matrix to be defined (rotation
step). The fitted equation becomes

.

This is the so-called canonical form of the model. The elements on the diagonal of D, i (i
= 1, 2, ..., k) are the eigenvalues of B. The columns of E', ei, are the orthonormal

eigenvectors of B, which means that the ei satisfy (B - i)ei = 0,  = 0 for i  j, and

 = 1.0.

2.  

If all the i are negative, x* is a point of maximum response. If all the i are positive, x* is
a point of minimum response. Finally, if the i are of mixed signs, the response is a saddle

function and x* is the saddle point.

3.  

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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Eigenvalues
that are
approximately
zero

If some i  0, the fitted ellipsoid

is elongated (i.e., it is flat) along the direction of the wi axis. Points along the wi axis will have an
estimated response close to optimal; thus the process engineer has flexibility in choosing "good"
operating conditions. If two eigenvalues (say i and j) are close to zero, a plane in the (wi, wj)
coordinates will have close to optimal operating conditions, etc.

Canonical
analysis
typically
performed by
software

It is nice to know that the JMP or SAS software (PROC RSREG) computes the eigenvalues i
and the orthonormal eigenvectors ei; thus there is no need to do a canonical analysis by hand.

Example: Canonical Analysis of Yield Response in Chemical Experiment using SAS

B matrix for
this example

Let us return to the chemical experiment example. This illustrate the method, but keep in mind
that when the number of factors is small (e.g., k=2 as in this example) canonical analysis is not
recommended in practice since simple contour plotting will provide sufficient information. The
fitted equation of the model yields

Compute the
eigenvalues
and find the
orthonormal
eigenvectors

To compute the eigenvalues i, we have to find all roots of the expression that results from
equating the determinant of B - iI to zero. Since B is symmetric and has real coefficients, there
will be k real roots i, i = 1, 2, ..., k. To find the orthonormal eigenvectors, solve the simultaneous

equations (B - iI)ei = 0 and  = 1.

SAS code for
performing
the canonical
analysis

This is the hard way, of course. These computations are easily performed using the SAS software
PROC RSREG. The SAS program applied to our example is:

data;
input x1 x2 y;
cards;
-1    -1     64.33
 1    -1     51.78
-1     1     77.30
 1     1     45.37
 0     0     62.08
 0     0     79.36
 0     0     75.29
 0     0     73.81
 0     0     69.45
-1.414 0     72.58
 1.414 0     37.42
 0    -1.414 54.63
 0     1.414 54.18

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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;
proc rsreg;
model y=x1 x2 /nocode/lackfit;
run;

The "nocode" option was used since the factors had been input in coded form.

SAS output
from the
canonical
analysis

The corresponding output from the SAS canonical analysis is as follows:

               Canonical Analysis of Response Surface

                                       Critical
                      Factor            Value
                        X1             -0.922
                        X2              0.346800

           Predicted value at stationary point     77.589146

                                     Eigenvectors
              Eigenvalues         X1               X2

                -4.973187        0.728460       -0.685089
                -9.827317        0.685089        0.728460
                    Stationary point is a maximum.

Interpretation
of the SAS
output

Notice that the eigenvalues are the two roots of

det(B - I) = (-7.25 ) (-7.55 - ) - (-2.425(-2.245)) = 0.

As mentioned previously, the stationary point is (x*)' = (-0.9278, 0.3468), which corresponds to
X*' = (161.64, 367.36). Since both eigenvalues are negative, x* is a point of maximum response.
To obtain the directions of the axis of the fitted ellipsoid, compute

w1 = 0.7285(x1 + 0.9278) - 0.6851(x2 - 0.3468) = 0.9143 + 0.7285x1 - 0.6851x2

and

w2 = 0.6851(x1 + 0.9278) - 0.7285(x2 - 0.3468) = 0.8830 + 0.6851x1 + 0.7285x2

Since | 1| < | 2|, there is somewhat more elongation in the wi direction. However, since both
eigenvalues are quite far from zero, there is not much flexibility in choosing operating conditions.
It can be seen from Figure 5.5 that the fitted ellipses do not have a great elongation in the w1
direction, the direction of the major axis. It is important to emphasize that confirmation
experiments at x* should be performed to check the validity of the estimated optimal solution.

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.5.Single response: Effect of
sampling error on optimal
solution

Experimental
error means
all derived
optimal
operating
conditions are
just estimates -
confidence
regions that
are likely to
contain the
optimal points
can be derived

Process engineers should be aware that the estimated optimal
operating conditions x* represent a single estimate of the true
(unknown) system optimal point. That is, due to sampling
(experimental) error, if the experiment is repeated, a different
quadratic function will be fitted which will yield a different stationary
point x*. Some authors (Box and Hunter, 1954; Myers and
Montgomery, 1995) provide a procedure that allows one to compute a
region in the factor space that, with a specified probability, contains
the system stationary point. This region is useful information for a
process engineer in that it provides a measure of how "good" the point
estimate x* is. In general, the larger this region is, the less reliable the
point estimate x* is. When the number of factors, k, is greater than 3,
these confidence regions are difficult to visualize.

Confirmation
runs are very
important

Awareness of experimental error should make a process engineer
realize the importance of performing confirmation runs at x*, the
estimated optimal operating conditions.

5.5.3.1.5. Single response: Effect of sampling error on optimal solution
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.6.Single response: Optimization
subject to experimental region
constraints

Optimal
operating
conditions may
fall outside
region where
experiment
conducted

Sometimes the optimal operating conditions x* simply fall outside
the region where the experiment was conducted. In these cases,
constrained optimization techniques can be used to find the solution

x* that optimizes  without leaving the region in the factor

space where the experiment took place.

Ridge analysis
is a method for
finding optimal
factor settings
that satisfy
certain
constraints

"Ridge Analysis", as developed by Hoerl (1959), Hoerl (1964) and
Draper (1963), is an optimization technique that finds factor settings
x* such that they

optimize     (x) = b0 + b'x + x'Bx

subject to:     x'x = 2

The solution x* to this problem provides operating conditions that
yield an estimated absolute maximum or minimum response on a
sphere of radius . Different solutions can be obtained by trying

different values of .

Solve with
non-linear
programming
software

The original formulation of Ridge Analysis was based on the
eigenvalues of a stationarity system. With the wide availability of
non-linear programming codes, Ridge Analysis problems can be
solved without recourse to eigenvalue analysis.

5.5.3.1.6. Single response: Optimization subject to experimental region constraints
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?

5.5.3.2.Multiple response case

When there
are multiple
responses, it is
often
impossible to
simultaneously
optimize each
one -
trade-offs
must be made

In the multiple response case, finding process operating conditions
that simultaneously maximize (or minimize, as desired) all the
responses is quite difficult, and often impossible. Almost inevitably,
the process engineer must make some trade-offs in order to find
process operating conditions that are satisfactory for most (and
hopefully all) the responses. In this subsection, we examine some
effective ways to make these trade-offs.

Path of steepest ascent●   

The desirability function approach●   

The mathematical programming approach

Dual response systems❍   

More than 2 responses❍   

●   

5.5.3.2. Multiple response case

http://www.itl.nist.gov/div898/handbook/pri/section5/pri532.htm [7/1/2003 4:16:23 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.2. Multiple response case

5.5.3.2.1.Multiple responses: Path of steepest
ascent

Objective:
consider and
balance the
individual
paths of
maximum
improvement

When the responses exhibit adequate linear fit (i.e., the response models are all
linear), the objective is to find a direction or path that simultaneously considers the
individual paths of maximum improvement and balances them in some way. This
case is addressed next.

When there is a mix of linear and higher-order responses, or when all empirical
response models are of higher-order, see sections 5.5.3.2.2 and 5.5.3.2.3. The
desirability method (section 5.5.3.2.2) can also be used when all response models
are linear.

Procedure: Path of Steepest Ascent, Multiple Responses.

A weighted
priority
strategy is
described
using the
path of
steepest
ascent for
each
response

The following is a weighted priority strategy using the path of steepest ascent for
each response.

Compute the gradients gi (i = 1, 2, . . ., k) of all responses as explained in
section 5.5.3.1.1. If one of the responses is clearly of primary interest
compared to the others, use only the gradient of this response and follow the
procedure of section 5.5.3.1.1. Otherwise, continue with step 2.

1.  

Determine relative priorities  for each of the k responses. Then, the

weighted gradient for the search direction is given by

and the weighted direction is

2.  

5.5.3.2.1. Multiple responses: Path of steepest ascent
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Weighting
factors
based on R2

The confidence cone for the direction of maximum improvement explained in
section 5.5.3.1.2 can be used to weight down "poor" response models that provide
very wide cones and unreliable directions. Since the width of the cone is
proportional to (1 - R2), we can use

Single
response
steepest
ascent
procedure

Given a weighted direction of maximum improvement, we can follow the single
response steepest ascent procedure as in section 5.5.3.1.1 by selecting points with
coordinates x* = di, i = 1, 2, ..., k. These and related issues are explained more
fully in Del Castillo (1996).

Example: Path of Steepest Ascent, Multiple Response Case

An example
using the
weighted
priority
method

Suppose the response model:

with  = 0.8968 represents the average yield of a production process obtained
from a replicated factorial experiment in the two controllable factors (in coded
units). From the same experiment, a second response model for the process standard
deviation of the yield is obtained and given by

with  = 0.5977. We wish to maximize the mean yield while minimizing the
standard deviation of the yield.

Step 1: compute the gradients:

Compute the
gradients

We compute the gradients as follows.

(recall we wish to minimize y2).

Step 2: find relative priorities:

5.5.3.2.1. Multiple responses: Path of steepest ascent
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Find relative
priorities

Since there are no clear priorities, we use the quality of fit as the priority:

Then, the weighted gradient is

g' = (0.6(0.3124) + 0.4(-0.7088), 0.6(0.95) + 0.4(-0.7054)) = (-0.096, 0.2878)
which, after scaling it (by dividing each coordinate by

), gives the weighted direction d' = (-.03164, 0.9486).

Therefore, if we want to move  = 1 coded units along the path of maximum
improvement, we will set x1 = (1)(-0.3164) = -0.3164, x2 = (1)(0.9486) = 0.9486 in
the next run or experiment.

5.5.3.2.1. Multiple responses: Path of steepest ascent
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.2. Multiple response case

5.5.3.2.2.Multiple responses: The desirability approach

The
desirability
approach is a
popular
method that
assigns a
"score" to a
set of
responses and
chooses factor
settings that
maximize that
score

The desirability function approach is one of the most widely used methods in industry for the
optimization of multiple response processes. It is based on the idea that the "quality" of a product
or process that has multiple quality characteristics, with one of them outside of some "desired"
limits, is completely unacceptable. The method finds operating conditions x that provide the
"most desirable" response values.

For each response Yi(x), a desirability function di(Yi) assigns numbers between 0 and 1 to the
possible values of Yi, with di(Yi) = 0 representing a completely undesirable value of Yi and di(Yi)
= 1 representing a completely desirable or ideal response value. The individual desirabilities are
then combined using the geometric mean, which gives the overall desirability D:

with k denoting the number of responses. Notice that if any response Yi is completely undesirable

(di(Yi) = 0), then the overall desirability is zero. In practice, fitted response values i are used in
place of the Yi.

Desirability
functions of
Derringer and
Suich

Depending on whether a particular response Yi is to be maximized, minimized, or assigned a
target value, different desirability functions di(Yi) can be used. A useful class of desirability
functions was proposed by Derringer and Suich (1980). Let Li, Ui and Ti be the lower, upper, and
target values, respectively, that are desired for response Yi, with Li  Ti  Ui.

Desirability
function for
"target is
best"

If a response is of the "target is best" kind, then its individual desirability function is

with the exponents s and t determining how important it is to hit the target value. For s = t = 1, the
desirability function increases linearly towards Ti; for s < 1, t < 1, the function is convex, and for
s > 1, t > 1, the function is concave (see the example below for an illustration).

5.5.3.2.2. Multiple responses: The desirability approach
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Desirability
function for
maximizing a
response

If a response is to be maximized instead, the individual desirability is defined as

with Ti in this case interpreted as a large enough value for the response.

Desirability
function for
minimizing a
response

Finally, if we want to minimize a response, we could use

with Ti denoting a small enough value for the response.

Desirability
approach
steps

The desirability approach consists of the following steps:

Conduct experiments and fit response models for all k responses;1.  

Define individual desirability functions for each response;2.  

Maximize the overall desirability D with respect to the controllable factors.3.  

Example:

An example
using the
desirability
approach

Derringer and Suich (1980) present the following multiple response experiment arising in the
development of a tire tread compound. The controllable factors are: x1, hydrated silica level, x2,
silane coupling agent level, and x3, sulfur level. The four responses to be optimized and their
desired ranges are:

Factor and
response
variables

Source Desired range

PICO Abrasion index, Y1 120 < Y1

200% modulus, Y2 1000 < Y2

Elongation at break, Y3 400 < Y3 < 600

Hardness, Y4 60 < Y4 < 75

The first two responses are to be maximized, and the value s=1 was chosen for their desirability
functions. The last two responses are "target is best" with T3 = 500 and T4 = 67.5. The values
s=t=1 were chosen in both cases.

5.5.3.2.2. Multiple responses: The desirability approach

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5322.htm (2 of 5) [7/1/2003 4:16:24 PM]



Experimental
runs from a
central
composite
design

The following experiments were conducted using a central composite design.

Run
Number x1 x2 x3 Y1 Y2 Y3 Y4

1 -1.00 -1.00 -1.00 102 900 470 67.5
2 +1.00 -1.00 -1.00 120 860 410 65.0
3 -1.00 +1.00 -1.00 117 800 570 77.5
4 +1.00 +1.00 -1.00 198 2294 240 74.5
5 -1.00 -1.00 +1.00 103 490 640 62.5
6 +1.00 -1.00 +1.00 132 1289 270 67.0
7 -1.00 +1.00 +1.00 132 1270 410 78.0
8 +1.00 +1.00 +1.00 139 1090 380 70.0
9 -1.63 0.00 0.00 102 770 590 76.0
10 +1.63 0.00 0.00 154 1690 260 70.0
11 0.00 -1.63 0.00 96 700 520 63.0
12 0.00 +1.63 0.00 163 1540 380 75.0
13 0.00 0.00 -1.63 116 2184 520 65.0
14 0.00 0.00 +1.63 153 1784 290 71.0
15 0.00 0.00 0.00 133 1300 380 70.0
16 0.00 0.00 0.00 133 1300 380 68.5
17 0.00 0.00 0.00 140 1145 430 68.0
18 0.00 0.00 0.00 142 1090 430 68.0
19 0.00 0.00 0.00 145 1260 390 69.0
20 0.00 0.00 0.00 142 1344 390 70.0

Fitted
response

Using ordinary least squares and standard diagnostics, the fitted responses are:

(R2 = 0.8369 and adjusted R2 = 0.6903);

(R2 = 0.7137 and adjusted R2 = 0.4562);

(R2 = 0.682 and adjusted R2 = 0.6224);

(R2 = 0.8667 and adjusted R2 = 0.7466).

Note that no interactions were significant for response 3 and that the fit for response 2 is quite
poor. 

5.5.3.2.2. Multiple responses: The desirability approach
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Optimization
performed by
Design-Expert
software

Optimization of D with respect to x was carried out using the Design-Expert software. Figure 5.7

shows the individual desirability functions di( i) for each of the four responses. The functions
are linear since the values of s and t were set equal to one. A dot indicates the best solution found
by the Design-Expert solver.

Diagram of
desirability
functions and
optimal
solutions

FIGURE 5.7  Desirability Functions and Optimal Solution for Example Problem

Best Solution The best solution is (x*)' = (-0.10, 0.15, -1.0) and results in:

d1( 1) = 0.34    ( 1(x*) = 136.4)

d2( 2) = 1.0    ( 2(x*) = 157.1)

d3( 3) = 0.49    ( 3(x*) = 450.56)

d4( 4) = 0.76    ( 4(x*) = 69.26)

The overall desirability for this solution is 0.596. All responses are predicted to be within the
desired limits.

5.5.3.2.2. Multiple responses: The desirability approach
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3D plot of the
overall
desirability
function

Figure 5.8 shows a 3D plot of the overall desirability function D(x) for the (x2, x3) plane when x1
is fixed at -0.10. The function D(x) is quite "flat" in the vicinity of the optimal solution, indicating
that small variations around x* are predicted to not change the overall desirability drastically.
However, the importance of performing confirmatory runs at the estimated optimal operating
conditions should be emphasized. This is particularly true in this example given the poor fit of the

response models (e.g., 2).

FIGURE 5.8  Overall Desirability Function for Example Problem

5.5.3.2.2. Multiple responses: The desirability approach
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.2. Multiple response case

5.5.3.2.3.Multiple responses: The mathematical
programming approach

The
mathematical
programming
approach
maximizes or
minimizes a
primary
response,
subject to
appropriate
constraints
on all other
responses

The analysis of multiple response systems usually involves some type of
optimization problem. When one response can be chosen as the "primary", or
most important response, and bounds or targets can be defined on all other
responses, a mathematical programming approach can be taken. If this is not
possible, the desirability approach should be used instead.

In the mathematical programming approach, the primary response is maximized
or minimized, as desired, subject to appropriate constraints on all other
responses. The case of two responses ("dual" responses) has been studied in
detail by some authors and is presented first. Then, the case of more than 2
responses is illustrated.

Dual response systems●   

More than 2 responses●   

Dual response systems

Optimization
of dual
response
systems

The optimization of dual response systems (DRS) consists of finding operating
conditions x that

with T denoting the target value for the secondary response, p the number of
primary responses (i.e., responses to be optimized), s the number of secondary
responses (i.e., responses to be constrained), and  is the radius of a spherical

constraint that limits the region in the controllable factor space where the search
should be undertaken. The value of  should be chosen with the purpose of

avoiding solutions that extrapolate too far outside the region where the

5.5.3.2.3. Multiple responses: The mathematical programming approach
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experimental data were obtained. For example, if the experimental design is a
central composite design, choosing  (axial distance) is a logical choice.

Bounds of the form L  xi  U can be used instead if a cubical experimental
region were used (e.g., when using a factorial experiment). Note that a Ridge
Analysis problem is related to a DRS problem when the secondary constraint is
absent. Thus, any algorithm or solver for DRS's will also work for the Ridge
Analysis of single response systems.

Nonlinear
programming
software
required for
DRS

In a DRS, the response models  and  can be linear, quadratic or even cubic

polynomials. A nonlinear programming algorithm has to be used for the
optimization of a DRS. For the particular case of quadratic responses, an
equality constraint for the secondary response, and a spherical region of
experimentation, specialized optimization algorithms exist that guarantee global
optimal solutions. In such a case, the algorithm DRSALG can be used
(download from
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.stat.cmu.edu/jqt/29-3),
but a Fortran compiler is necessary.

More general
case

In the more general case of inequality constraints or a cubical region of
experimentation, a general purpose nonlinear solver must be used and several
starting points should be tried to avoid local optima. This is illustrated in the
next section.

Example for more than 2 responses

Example:
problem
setup

The values of three components (x1, x2, x3) of a propellant need to be selected
to maximize a primary response, burning rate (Y1), subject to satisfactory levels
of two secondary reponses; namely, the variance of the burning rate (Y2) and the
cost (Y3). The three components must add to 100% of the mixture. The fitted
models are:

5.5.3.2.3. Multiple responses: The mathematical programming approach
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The
optimization
problem

The optimization problem is therefore:

maximize 1(x)

subject to: 2(x)  -4.5

 3(x)  20

 x1 + x2 + x3 = 1.0

 0  x1  1

 0  x2  1

 0  x3  1

Solve using
Excel solver
function

We can use Microsoft Excel's "solver" to solve this problem. The table below
shows an Excel spreadsheet that has been set up with the problem above. Cells
B2:B4 contain the decision variables (cells to be changed), cell E2 is to be
maximized, and all the constraints need to be entered appropriately. The figure
shows the spreadsheet after the solver completes the optimization. The solution

is (x*)' = (0.212, 0.343, 0.443) which provides 1 = 106.62, 2 = 4.17, and 3
= 18.23. Therefore, both secondary responses are below the specified upper
bounds. The solver should be run from a variety of starting points (i.e., try
different initial values in cells B1:B3 prior to starting the solver) to avoid local
optima. Once again, confirmatory experiments should be conducted at the
estimated optimal operating conditions.

Excel
spreadsheet

 A B C D E
1 Factors   Responses  
2 x1 0.21233  Y1(x) 106.6217
3 x2 0.343725  Y2(x) 4.176743
4 x3 0.443946  Y3(x) 18.23221
5 Additional constraint    
6 x1 + x2 + x3 1.000001    

5.5.3.2.3. Multiple responses: The mathematical programming approach
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5. Process Improvement
5.5. Advanced topics

5.5.4.What is a mixture design?

When the
factors are
proportions
of a blend,
you need to
use a
mixture
design

In a mixture experiment, the independent factors are proportions of
different components of a blend. For example, if you want to optimize
the tensile strength of stainless steel, the factors of interest might be the
proportions of iron, copper, nickel, and chromium in the alloy. The fact
that the proportions of the different factors must sum to 100%
complicates the design as well as the analysis of mixture experiments.

Standard
mixture
designs and
constrained
mixture
designs

When the mixture components are subject to the constraint that they
must sum to one, there are standard mixture designs for fitting standard
models, such as Simplex-Lattice designs and Simplex-Centroid designs.
When mixture components are subject to additional constraints, such as
a maximum and/or minimum value for each component, designs other
than the standard mixture designs, referred to as constrained mixture
designs or Extreme-Vertices designs, are appropriate.

Measured
response
assumed to
depend only
on relative
proportions

In mixture experiments, the measured response is assumed to depend
only on the relative proportions of the ingredients or components in the
mixture and not on the amount of the mixture. The amount of the
mixture could also be studied as an additional factor in the experiment;
however, this would be an example of mixture and process variables
being treated together.

Proportions
of each
variable
must sum to
1

The main distinction between mixture experiments and independent
variable experiments is that with the former, the input variables or
components are non-negative proportionate amounts of the mixture, and
if expressed as fractions of the mixture, they must sum to one. If for
some reason, the sum of the component proportions is less than one, the
variable proportions can be rewritten as scaled fractions so that the
scaled fractions sum to one.

5.5.4. What is a mixture design?
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Purpose of a
mixture
design

In mixture problems, the purpose of the experiment is to model the
blending surface with some form of mathematical equation so that:

Predictions of the response for any mixture or combination of the
ingredients can be made empirically, or

1.  

Some measure of the influence on the response of each
component singly and in combination with other components can
be obtained.

2.  

Assumptions
for mixture
experiments

The usual assumptions made for factorial experiments are also made for
mixture experiments. In particular, it is assumed that the errors are
independent and identically distributed with zero mean and common
variance. Another assumption that is made, as with factorial designs, is
that the true underlying response surface is continuous over the region
being studied.

Steps in
planning a
mixture
experiment

Planning a mixture experiment typically involves the following steps
(Cornell and Piepel, 1994):

Define the objectives of the experiment.1.  

Select the mixture components and any other factors to be
studied. Other factors may include process variables or the total
amount of the mixture.

2.  

Identify any constraints on the mixture components or other
factors in order to specify the experimental region.

3.  

Identify the response variable(s) to be measured.4.  

Propose an appropriate model for modeling the response data as
functions of the mixture components and other factors selected
for the experiment.

5.  

Select an experimental design that is sufficient not only to fit the
proposed model, but which allows a test of model adequacy as
well.

6.  

5.5.4. What is a mixture design?
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5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.1.Mixture screening designs

Screening
experiments
can be used
to identify
the
important
mixture
factors

In some areas of mixture experiments, for example, certain chemical
industries, there is often a large number, q, of potentially important
components that can be considered candidates in an experiment. The
objective of these types of experiments is to screen the components to
identify the ones that are most important. In this type of situation, the
experimenter should consider a screening experiment to reduce the
number of possible components.

A first order
mixture
model

The construction of screening designs and their corresponding models
often begins with the first-order or first-degree mixture model

for which the beta coefficients are non-negative and sum to one.

Choices of
types of
screening
designs
depend on
constraints

If the experimental region is a simplex, it is generally a good idea to
make the ranges of the components as similar as possible. Then the
relative effects of the components can be assessed by ranking the ratios
of the parameter estimates (i.e., the estimates of the i), relative to their
standard errors. Simplex screening designs are recommended when it is
possible to experiment over the total simplex region. Constrained
mixture designs are suggested when the proportions of some or all of the
components are restricted by upper and lower bounds. If these designs
are not feasible in this situation, then D-optimal designs for a linear
model are always an option.

5.5.4.1. Mixture screening designs
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5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.2.Simplex-lattice designs

Definition of
simplex-
lattice points

A {q, m} simplex-lattice design for q components consists of points
defined by the following coordinate settings: the proportions assumed by
each component take the m+1 equally spaced values from 0 to 1,

xi = 0, 1/m, 2/m, ... , 1 for i = 1, 2, ... , q

and all possible combinations (mixtures) of the proportions from this
equation are used.

Except for the
center, all
design points
are on the
simplex
boundaries

Note that the standard Simplex-Lattice and the Simplex-Centroid designs
(described later) are boundary-point designs; that is, with the exception of
the overall centroid, all the design points are on the boundaries of the
simplex. When one is interested in prediction in the interior, it is highly
desirable to augment the simplex-type designs with interior design points.

Example of a
three-
component
simplex
lattice design

Consider a three-component mixture for which the number of equally
spaced levels for each component is four (i.e., xi = 0, 0.333, 0.667, 1). In
this example q = 3 and m = 3. If one uses all possible blends of the three
components with these proportions, the {3, 3} simplex-lattice then
contains the 10 blending coordinates listed in the table below. The
experimental region and the distribution of design runs over the simplex
region are shown in the figure below. There are 10 design runs for the {3,
3} simplex-lattice design.

5.5.4.2. Simplex-lattice designs
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Design table TABLE 5.3  Simplex Lattice
Design

X1 X2 X3

0 0 1
0 0.667 0.333
0 1 0

0.333 0 0.667
0.333 0.333 0.333
0.333 0.6667 0
0.667 0 0.333
0.667 0.333 0

1 0 0

Diagram
showing
configuration
of design
runs

FIGURE 5.9  Configuration of Design Runs for a {3,3}
Simplex-Lattice Design

The number of design points in the simplex-lattice is (q+m-1)!/(m!(q-1)!).

5.5.4.2. Simplex-lattice designs
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Definition of
canonical
polynomial
model used in
mixture
experiments

Now consider the form of the polynomial model that one might fit to the
data from a mixture experiment. Due to the restriction x1 + x2 + ... + xq =
1, the form of the regression function that is fit to the data from a mixture
experiment is somewhat different from the traditional polynomial fit and is
often referred to as the canonical polynomial. Its form is derived using the
general form of the regression function that can be fit to data collected at
the points of a {q, m} simplex-lattice design and substituting into this
function the dependence relationship among the xi terms. The number of
terms in the {q, m} polynomial is (q+m-1)!/(m!(q-1)!), as stated
previously. This is equal to the number of points that make up the
associated {q, m} simplex-lattice design.

Example for
a {q, m=1}
simplex-
lattice design

For example, the equation that can be fit to the points from a {q, m=1}
simplex-lattice design is

Multiplying 0 by (x1 + x2 + ... + xq = 1), the resulting equation is

with  = 0 + i for all i = 1, ..., q.

First-
order
canonical
form

This is called the canonical form of the first-order mixture model. In
general, the canonical forms of the mixture models (with the asterisks
removed from the parameters) are as follows:

Summary of
canonical
mixture
models

Linear

Quadratic

Cubic

Special
Cubic

5.5.4.2. Simplex-lattice designs
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Linear
blending
portion

The terms in the canonical mixture polynomials have simple
interpretations. Geometrically, the parameter i in the above equations
represents the expected response to the pure mixture xi=1, xj=0, i  j, and
is the height of the mixture surface at the vertex xi=1. The portion of each
of the above polynomials given by

is called the linear blending portion. When blending is strictly additive,
then the linear model form above is an appropriate model.

Three-
component
mixture
example

The following example is from Cornell (1990) and consists of a
three-component mixture problem. The three components are
Polyethylene (X1), polystyrene (X2), and polypropylene (X3), which are
blended together to form fiber that will be spun into yarn. The product
developers are only interested in the pure and binary blends of these three
materials. The response variable of interest is yarn elongation in kilograms
of force applied. A {3,2} simplex-lattice design is used to study the
blending process. The simplex region and the six design runs are shown in
the figure below. The figure was generated in JMP version 3.2. The design
and the observed responses are listed in the table below. There were two
replicate observations run at each of the pure blends. There were three
replicate observations run at the binary blends. There are o15 observations
with six unique design runs.

Diagram
showing the
designs runs
for this
example

5.5.4.2. Simplex-lattice designs

http://www.itl.nist.gov/div898/handbook/pri/section5/pri542.htm (4 of 7) [7/1/2003 4:16:26 PM]



FIGURE 5.10  Design Runs for the {3,2} Simplex-Lattice Yarn
Elongation Problem

Table
showing the
simplex-
lattice design
and observed
responses

TABLE 5.4  Simplex-Lattice Design for Yarn
Elongation Problem

X1 X2 X3
Observed
Elongation Values

0.0 0.0 1.0 16.8, 16.0
0.0 0.5 0.5 10.0, 9.7, 11.8
0.0 1.0 0.0 8.8, 10.0
0.5 0.0 0.5 17.7, 16.4, 16.6
0.5 0.5 0.0 15.0, 14.8, 16.1
1.0 0.0 0.0 11.0, 12.4

Fit a
quadratic
mixture
model using
JMP software

The design runs listed in the above table are in standard order. The actual
order of the 15 treatment runs was completely randomized. JMP 3.2 will
be used to analyze the results. Since there are three levels of each of the
three mixture components, a quadratic mixture model can be fit to the
data. The output from the model fit is shown below. Note that there was
no intercept in the model. To analyze the data in JMP, create a new table
with one column corresponding to the observed elongation values. Select
Fit Model and create the quadratic mixture model (this will look like the
'traditional' interactions regression model obtained from standard classical
designs). Check the No Intercept box on the Fit Model screen. Click on
Run Model. The output is shown below.

5.5.4.2. Simplex-lattice designs
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JMP analysis
for the
mixture
model
example

JMP Output for {3,2} Simplex-Lattice Design
Screening Fit

Summary of Fit

RSquare                        0.951356
RSquare Adj                    0.924331
Root Mean Square Error         0.85375
Mean of Response              13.54
Observations (or Sum Wgts)    15

                 Analysis of Variance

Source   DF  Sum of Squares  Mean Square  F Ratio
Model     5     128.29600      25.6592    35.2032
Error     9       6.56000       0.7289
C Total  14     134.85600

Prob > F  < .0001 
Tested against reduced model: Y=mean

                 Parameter Estimates

Term    Estimate  Std Error   t Ratio  Prob>|t|
X1        11.7     0.603692    19.38   <.0001
X2         9.4     0.603692    15.57   <.0001
X3        16.4     0.603692    27.17   <.0001
X2*X1     19       2.608249     7.28   <.0001
X3*X1     11.4     2.608249     4.37   0.0018
X3*X2     -9.6     2.608249    -3.68   0.0051

Interpretation
of the JMP
output

Under the parameter estimates section of the output are the individual
t-tests for each of the parameters in the model. The three cross product
terms are significant (X1*X2, X3*X1, X3*X2), indicating a significant
quadratic fit.

The fitted
quadratic
model

The fitted quadratic mixture model is

5.5.4.2. Simplex-lattice designs
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Conclusions
from the
fitted
quadratic
model

Since b3 > b1 > b2, one can conclude that component 3 (polypropylene)
produces yarn with the highest elongation. Additionally, since b12 and b13
are positive, blending components 1 and 2 or components 1 and 3
produces higher elongation values than would be expected just by
averaging the elongations of the pure blends. This is an example of
'synergistic' blending effects. Components 2 and 3 have antagonistic
blending effects because b23 is negative.

Contour plot
of the
predicted
elongation
values

The figure below is the contour plot of the elongation values. From the
plot it can be seen that if maximum elongation is desired, a blend of
components 1 and 3 should be chosen consisting of about 75% - 80%
component 3 and 20% - 25% component 1.

FIGURE 5.11  Contour Plot of Predicted Elongation Values from
{3,2} Simplex-Lattice Design

5.5.4.2. Simplex-lattice designs
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5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.3.Simplex-centroid designs

Definition
of simplex-
centroid
designs

A second type of mixture design is the simplex-centroid design. In the
q-component simplex-centroid design, the number of distinct points is 2q - 1.
These points correspond to q permutations of (1, 0, 0, ..., 0) or q single

component blends, the  permutations of (.5, .5, 0, ..., 0) or all binary

mixtures, the  permutations of (1/3, 1/3, 1/3, 0, ..., 0), ..., and so on, with

finally the overall centroid point (1/q, 1/q, ..., 1/q) or q-nary mixture.

The design points in the Simplex-Centroid design will support the polynomial

Model
supported
by simplex-
centroid
designs

which is the qth-order mixture polynomial. For q = 2, this is the quadratic
model. For q = 3, this is the special cubic model.

Example of
runs for
three and
four
components

For example, the fifteen runs for a four component (q = 4) simplex-centroid
design are:

(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (.5,.5,0,0), (.5,0,.5,0) ...,
(0,0,.5,.5), (1/3,1/3,1/3,0), ...,(0,1/3,1/3,1/3), (1/4,1/4,1/4,1/4).

The runs for a three component simplex-centroid design of degree 2 are

(1,0,0), (0,1,0), (0,0,1), (.5,.5,0), (.5,0,.5), (0,.5,.5), (1/3, 1/3, 1/3).

However, in order to fit a first-order model with q =4, only the five runs with a
"1" and all "1/4's" would be needed. To fit a second-order model, add the six
runs with a ".5" (this also fits a saturated third-order model, with no degrees of
freedom left for error).

5.5.4.3. Simplex-centroid designs
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5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.4.Constrained mixture designs

Upper and/or
lower bound
constraints may
be present

In mixture designs when there are constraints on the component
proportions, these are often upper and/or lower bound constraints of
the form Li  xi  Ui, i = 1, 2,..., q, where Li is the lower bound for
the i-th component and Ui the upper bound for the i-th component.
The general form of the constrained mixture problem is

Typical
additional
constraints

x1 + x2 + ... + xq = 1

Li  xi  Ui,   for i = 1, 2,..., q

with Li  0 and Ui  1.

Example using
only lower
bounds

Consider the following case in which only the lower bounds in the
above equation are imposed, so that the constrained mixture
problem becomes

x1 + x2 + ... + xq = 1

Li  xi  1,   for i = 1, 2,..., q

Assume we have a three-component mixture problem with
constraints

0.3  x1     0.4  x2     0.1  x3

Feasible mixture
region

The feasible mixture space is shown in the figure below. Note that
the existence of lower bounds does not affect the shape of the
mixture region, it is still a simplex region. In general, this will
always be the case if only lower bounds are imposed on any of the
component proportions.

5.5.4.4. Constrained mixture designs
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Diagram
showing the
feasible mixture
space

FIGURE 5.12  The Feasible Mixture Space (Shaded Region) for
Three Components with Lower Bounds

A simple
transformation
helps in design
construction and
analysis

Since the new region of the experiment is still a simplex, it is
possible to define a new set of components that take on the values
from 0 to 1 over the feasible region. This will make the design
construction and the model fitting easier over the constrained region
of interest. These new components ( ) are called pseudo
components and are defined using the following formula

Formula for
pseudo
components

with

denoting the sum of all the lower bounds.

Computation of
the pseudo
components for
the example

In the three component example above, the pseudo components are

5.5.4.4. Constrained mixture designs
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Constructing the
design in the
pseudo
components

Constructing a design in the pseudo components is accomplished by
specifying the design points in terms of the  and then converting
them to the original component settings using

xi = Li + (1 - L)

Select
appropriate
design

In terms of the pseudo components, the experimenter has the choice
of selecting a Simplex-Lattice or a Simplex-Centroid design,
depending on the objectives of the experiment.

Simplex-centroid
design example
(after
transformation)

Suppose, we decided to use a Simplex-centroid design for the
three-component experiment. The table below shows the design
points in the pseudo components, along with the corresponding
setting for the original components.

Table showing
the design points
in both the
pseudo
components and
the original
components

TABLE 5.5  Pseudo Component Settings and
Original Component Settings, Three-Component

Simplex-Centroid Design
Pseudo Components  Original Components
X1 X2 X3  

1 0 0  0.5 0.4 0.1
0 1 0  0.3 0.6 0.1
0 0 1  0.3 0.4 0.3

0.5 0.5 0  0.4 0.5 0.1
0.5 0 0.5  0.4 0.4 0.2
0 0.5 0.5  0.3 0.5 0.2

0.3333 0.3333 0.3333  0.3667 0.4667 0.1666

Use of pseudo
components
(after
transformation)
is recommended

It is recommended that the pseudo components be used to fit the
mixture model. This is due to the fact that the constrained design
space will usually have relatively high levels of multicollinearity
among the predictors. Once the final predictive model for the
pseudo components has been determined, the equation in terms of
the original components can be determined by substituting the
relationship between xi and .

5.5.4.4. Constrained mixture designs
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D-optimal
designs can also
be used

Computer-aided designs (D-optimal, for example) can be used to
select points for a mixture design in a constrained region. See Myers
and Montgomery (1995) for more details on using D-optimal
designs in mixture experiments.

Extreme vertice
designs anre
another option

Note: There are other mixture designs that cover only a sub-portion
or smaller space within the simplex. These types of mixture designs
(not covered here) are referred to as extreme vertices designs. (See
chapter 11 of Myers and Montgomery (1995) or Cornell (1990).

5.5.4.4. Constrained mixture designs
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5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.5.Treating mixture and process
variables together

Options for
setting up
experiments
for
processes
that have
both
standard
process
variables
and mixture
variables

Consider a mixture experiment consisting of q mixture components and
k process variables. First consider the case in which each of the process
variables to be studied has only two levels. Orthogonally scaled factor
settings for the process variables will be used (i.e., -1 is the low level, 1
is the high level, and 0 is the center point). Also assume that each of the
components xi can range from 0 to 1. The region of interest then for the
process variables is a k-dimensional hypercube.

The region of interest for the mixture components is the
(q-1)-dimensional simplex. The combined region of interest for both the
process variables and the mixture components is of dimensionality q - 1
+ k.

Example of
three
mixture
components
and three
process
variables

For example, consider three mixture components (x1, x2, x3) with three
process variables (z1, z2, z3). The dimensionality of the region is 5. The
combined region of interest for the three mixture components and three
process variables is shown in the two figures below. The complete space
of the design can be viewed in either of two ways. The first diagram
shows the idea of a full factorial at each vertex of the three-component
simplex region. The second diagram shows the idea of a
three-component simplex region at each point in the full factorial. In
either case, the same overall process space is being investigated.

5.5.4.5. Treating mixture and process variables together
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Diagram
showing
simplex
region of a
3-component
mixture with
a 2^3 full
factorial at
each pure
mixture run

FIGURE 5.13  Simplex Region of a Three Component Mixture with
a 23 Full Factorial at Each Pure Mixture Run

Diagram
showing
process
space of a 23

full factorial
with the
3-component
simplex
region at
each point
of the full
factorial

FIGURE 5.14  Process Space of a 23 Full Factorial with the Three
Component Simplex Region at Each Point of the Full Factorial

5.5.4.5. Treating mixture and process variables together
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Additional
options
available

As can be seen from the above diagrams, setting up the design
configurations in the process variables and mixture components
involves setting up either a mixture design at each point of a
configuration in the process variables, or similarly, creating a factorial
arrangement in the process variables at each point of composition in the
mixture components. For the example depicted in the above two
diagrams, this is not the only design available for this number of
mixture components with the specified number of process variables.
Another option might be to run a fractional factorial design at each
vertex or point of the mixture design, with the same fraction run at each
mixture design point. Still another option might be to run a fractional
factorial design at each vertex or point of the mixture design, with a
different fraction run at each mixture design point.

5.5.4.5. Treating mixture and process variables together
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5. Process Improvement
5.5. Advanced topics

5.5.5.How can I account for nested
variation (restricted randomization)?

Nested data
structures are
common and
lead to many
sources of
variability

Many processes have more than one source of variation in them. In
order to reduce variation in processes, these multiple sources must be
understood, and that often leads to the concept of nested or hierarchical
data structures. For example, in the semiconductor industry, a batch
process may operate on several wafers at a time (wafers are said to be
nested within batch). Understanding the input variables that control
variation among those wafers, as well as understanding the variation
across each wafer in a run, is an important part of the strategy for
minimizing the total variation in the system.

Example of
nested data

Figure 5.15 below represents a batch process that uses 7 monitor
wafers in each run. The plan further calls for measuring response on
each wafer at each of 9 sites. The organization of the sampling plan
has a hierarchical or nested structure: the batch run is the topmost
level, the second level is an individual wafer, and the third level is the
site on the wafer.

The total amount of data generated per batch run will be 7*9 = 63 data
points. One approach to analyzing these data would be to compute the
mean of all these points as well as their standard deviation and use
those results as responses for each run.

5.5.5. How can I account for nested variation (restricted randomization)?
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Diagram
illustrating
the example

FIGURE 5.15  Hierarchical Data Structure Example

Sites nested
within wafers
and wafers
are nested
within runs

Analyzing the data as suggested above is not absolutely incorrect, but
doing so loses information that one might otherwise obtain. For
example, site 1 on wafer 1 is physically different from site 1 on wafer
2 or on any other wafer. The same is true for any of the sites on any of
the wafers. Similarly, wafer 1 in run 1 is physically different from
wafer 1 in run 2, and so on. To describe this situation one says that
sites are nested within wafers while wafers are nested within runs.

Nesting
places
restrictions on
the
randomization

As a consequence of this nesting, there are restrictions on the
randomization that can occur in the experiment. This kind of restricted
randomization always produces nested sources of variation. Examples
of nested variation or restricted randomization discussed on this page
are split-plot and strip-plot designs.

Wafer-to-
wafer and
site-to-site
variations are
often "noise
factors" in an
experiment

The objective of an experiment with the type of sampling plan
described in Figure 5.15 is generally to reduce the variability due to
sites on the wafers and wafers within runs (or batches) in the process.
The sites on the wafers and the wafers within a batch become sources
of unwanted variation and an investigator seeks to make the system
robust to those sources -- in other words, one could treat wafers and
sites as noise factors in such an experiment.

5.5.5. How can I account for nested variation (restricted randomization)?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri55.htm (2 of 12) [7/1/2003 4:16:27 PM]



Treating
wafers and
sites as
random
effects allows
calculation of
variance
estimates

Because the wafers and the sites represent unwanted sources of
variation and because one of the objectives is to reduce the process
sensitivity to these sources of variation, treating wafers and sites as
random effects in the analysis of the data is a reasonable approach. In
other words, nested variation is often another way of saying nested
random effects or nested sources of noise. If the factors "wafers" and
"sites", are treated as random effects, then it is possible to estimate a
variance component due to each source of variation through analysis of
variance techniques. Once estimates of the variance components have
been obtained, an investigator is then able to determine the largest
source of variation in the process under experimentation, and also
determine the magnitudes of the other sources of variation in relation
to the largest source.

Nested
random
effects same
as nested
variation

If an experiment or process has nested variation, the experiment or
process has multiple sources of random error that affect its output.
Having nested random effects in a model is the same thing as having
nested variation in a model.

Split-Plot Designs

Split-plot
designs often
arise when
some factors
are "hard to
vary" or when
batch
processes are
run

Split-plot designs result when a particular type of restricted
randomization has occurred during the experiment. A simple factorial
experiment can result in a split-plot type of design because of the way
the experiment was actually executed.

In many industrial experiments, three situations often occur:

some of the factors of interest may be 'hard to vary' while the
remaining factors are easy to vary. As a result, the order in
which the treatment combinations for the experiment are run is
determined by the ordering of these 'hard-to-vary' factors

1.  

experimental units are processed together as a batch for one or
more of the factors in a particular treatment combination

2.  

experimental units are processed individually, one right after the
other, for the same treatment combination without resetting the
factor settings for that treatment combination.

3.  

5.5.5. How can I account for nested variation (restricted randomization)?
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A split-plot
experiment
example

An experiment run under one of the above three situations usually
results in a split-plot type of design. Consider an experiment to
examine electroplating of aluminum (non-aqueous) on copper strips.
The three factors of interest are: current (A); solution temperature (T);
and the solution concentration of the plating agent (S). Plating rate is
the measured response. There are a total of 16 copper strips available
for the experiment. The treatment combinations to be run
(orthogonally scaled) are listed below in standard order (i.e., they have
not been randomized):

Table
showing the
design matrix

TABLE 5.6  Orthogonally Scaled Treatment
Combinations from a 23 Full Factorial

Current Temperature Concentration

-1 -1 -1
-1 -1 +1
-1 +1 -1
-1 +1 +1
+1 -1 -1
+1 -1 +1
+1 +1 -1
+1 +1 +1

Concentration
is hard to
vary, so
minimize the
number of
times it is
changed

Consider running the experiment under the first condition listed above,
with the factor solution concentration of the plating agent (S) being
hard to vary. Since this factor is hard to vary, the experimenter would
like to randomize the treatment combinations so that the solution
concentration factor has a minimal number of changes. In other words,
the randomization of the treatment runs is restricted somewhat by the
level of the solution concentration factor.

Randomize so
that all runs
for one level
of
concentration
are run first

As a result, the treatment combinations might be randomized such that
those treatment runs corresponding to one level of the concentration
(-1) are run first. Each copper strip is individually plated, meaning
only one strip at a time is placed in the solution for a given treatment
combination. Once the four runs at the low level of solution
concentration have been completed, the solution is changed to the high
level of concentration (1), and the remaining four runs of the
experiment are performed (where again, each strip is individually
plated).

5.5.5. How can I account for nested variation (restricted randomization)?
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Performing
replications

Once one complete replicate of the experiment has been completed, a
second replicate is performed with a set of four copper strips processed
for a given level of solution concentration before changing the
concentration and processing the remaining four strips. Note that the
levels for the remaining two factors can still be randomized. In
addition, the level of concentration that is run first in the replication
runs can also be randomized.

Whole plot
and subplot
factors

Running the experiment in this way results in a split-plot design.
Solution concentration is known as the whole plot factor and the
subplot factors are the current and the solution temperature.

Definition of
experimental
units and
whole plot
and subplot
factors for
this
experiment

A split-plot design has more than one size experimental unit. In this
experiment, one size experimental unit is an individual copper strip.
The treatments or factors that were applied to the individual strips are
solution temperature and current (these factors were changed each time
a new strip was placed in the solution). The other or larger size
experimental unit is a set of four copper strips. The treatment or factor
that was applied to a set of four strips is solution concentration (this
factor was changed after four strips were processed). The smaller size
experimental unit is referred to as the subplot experimental unit, while
the larger experimental unit is referred to as the whole plot unit.

Each size of
experimental
unit leads to
an error term
in the model
for the
experiment

There are 16 subplot experimental units for this experiment. Solution
temperature and current are the subplot factors in this experiment.
There are four whole-plot experimental units in this experiment.
Solution concentration is the whole-plot factor in this experiment.
Since there are two sizes of experimental units, there are two error
terms in the model, one that corresponds to the whole-plot error or
whole-plot experimental unit and one that corresponds to the subplot
error or subplot experimental unit.

5.5.5. How can I account for nested variation (restricted randomization)?
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Partial
ANOVA table

The ANOVA table for this experiment would look, in part, as follows:

Source                                   DF

Replication                               1
Concentration                             1
Error (Whole plot) = Rep*Conc             1
Temperature                               1
Rep*Temp                                  1
Current                                   1
Rep*Current                               1
Temp*Conc                                 1
Rep*Temp*Conc                             1
Temp*Current                              1
Rep*Temp*Current                          1
Current*Conc                              1
Rep*Current*Conc                          1
Temp*Current*Conc                         1
Error (Subplot) =Rep*Temp*Current*Conc    1

The first three sources are from the whole-plot level, while the next 12
are from the subplot portion. A normal probability plot of the 12
subplot term estimates could be used to look for significant terms.

A batch
process leads
to a different
experiment -
also a
strip-plot

Consider running the experiment under the second condition listed
above (i.e., a batch process) for which four copper strips are placed in
the solution at one time. A specified level of current can be applied to
an individual strip within the solution. The same 16 treatment
combinations (a replicated 23 factorial) are run as were run under the
first scenario. However, the way in which the experiment is performed
would be different. There are four treatment combinations of solution
temperature and solution concentration: (-1, -1), (-1, 1), (1, -1), (1, 1).
The experimenter randomly chooses one of these four treatments to set
up first. Four copper strips are placed in the solution. Two of the four
strips are randomly assigned to the low current level. The remaining
two strips are assigned to the high current level. The plating is
performed and the response is measured. A second treatment
combination of temperature and concentration is chosen and the same
procedure is followed. This is done for all four temperature /
concentration combinations.

This also a
split-plot
design

Running the experiment in this way also results in a split-plot design in
which the whole-plot factors are now solution concentration and
solution temperature, and the subplot factor is current.

5.5.5. How can I account for nested variation (restricted randomization)?
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Defining
experimental
units

In this experiment, one size experimental unit is again an individual
copper strip. The treatment or factor that was applied to the individual
strips is current (this factor was changed each time for a different strip
within the solution). The other or larger size experimental unit is again
a set of four copper strips. The treatments or factors that were applied
to a set of four strips are solution concentration and solution
temperature (these factors were changed after four strips were
processed).

Subplot
experimental
unit

The smaller size experimental unit is again referred to as the subplot
experimental unit. There are 16 subplot experimental units for this
experiment. Current is the subplot factor in this experiment.

Whole-plot
experimental
unit

The larger-size experimental unit is the whole-plot experimental unit.
There are four whole plot experimental units in this experiment and
solution concentration and solution temperature are the whole plot
factors in this experiment.

Two error
terms in the
model

There are two sizes of experimental units and there are two error terms
in the model: one that corresponds to the whole-plot error or
whole-plot experimental unit, and one that corresponds to the subplot
error or subplot experimental unit.

Partial
ANOVA table

The ANOVA for this experiment looks, in part, as follows:

Source                             DF

Concentration                       1
Temperature                         1
Error (Whole plot) = Conc*Temp      1

Current                             1
Conc*Current                        1
Temp*Current                        1
Conc*Temp*Current                   1
Error (Subplot)                     8 

The first three sources come from the whole-plot level and the next 5
come from the subplot level. Since there are 8 degrees of freedom for
the subplot error term, this MSE can be used to test each effect that
involves current.

5.5.5. How can I account for nested variation (restricted randomization)?
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Running the
experiment
under the
third scenario

Consider running the experiment under the third scenario listed above.
There is only one copper strip in the solution at one time. However,
two strips, one at the low current and one at the high current, are
processed one right after the other under the same temperature and
concentration setting. Once two strips have been processed, the
concentration is changed and the temperature is reset to another
combination. Two strips are again processed, one after the other, under
this temperature and concentration setting. This process is continued
until all 16 copper strips have been processed.

This also a
split-plot
design

Running the experiment in this way also results in a split-plot design in
which the whole-plot factors are again solution concentration and
solution temperature and the subplot factor is current. In this
experiment, one size experimental unit is an individual copper strip.
The treatment or factor that was applied to the individual strips is
current (this factor was changed each time for a different strip within
the solution). The other or larger-size experimental unit is a set of two
copper strips. The treatments or factors that were applied to a pair of
two strips are solution concentration and solution temperature (these
factors were changed after two strips were processed). The smaller size
experimental unit is referred to as the subplot experimental unit.

Current is the
subplot factor
and
temperature
and
concentration
are the whole
plot factors

There are 16 subplot experimental units for this experiment. Current is
the subplot factor in the experiment. There are eight whole-plot
experimental units in this experiment. Solution concentration and
solution temperature are the whole plot factors. There are two error
terms in the model, one that corresponds to the whole-plot error or
whole-plot experimental unit, and one that corresponds to the subplot
error or subplot experimental unit.

Partial
ANOVA table

The ANOVA for this (third) approach is, in part, as follows:

Source                          DF

Concentration                  1
Temperature                    1
Conc*Temp                      1
Error (Whole plot)             4

Current                        1
Conc*Current                   1
Temp*Current                   1
Conc*Temp*Current              1

5.5.5. How can I account for nested variation (restricted randomization)?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri55.htm (8 of 12) [7/1/2003 4:16:27 PM]



Error (Subplot)                4

The first four terms come from the whole-plot analysis and the next 5
terms come from the subplot analysis. Note that we have separate error
terms for both the whole plot and the subplot effects, each based on 4
degrees of freedom.

Primary
distinction of
split-plot
designs is that
they have
more than one
experimental
unit size (and
therefore
more than one
error term)

As can be seen from these three scenarios, one of the major differences
in split-plot designs versus simple factorial designs is the number of
different sizes of experimental units in the experiment. Split-plot
designs have more than one size experimental unit, i.e., more than one
error term. Since these designs involve different sizes of experimental
units and different variances, the standard errors of the various mean
comparisons involve one or more of the variances. Specifying the
appropriate model for a split-plot design involves being able to identify
each size of experimental unit. The way an experimental unit is
defined relative to the design structure (for example, a completely
randomized design versus a randomized complete block design) and
the treatment structure (for example, a full 23 factorial, a resolution V
half fraction, a two-way treatment structure with a control group, etc.).
As a result of having greater than one size experimental unit, the
appropriate model used to analyze split-plot designs is a mixed model.

Using wrong
model can
lead to invalid
conclusions

If the data from an experiment are analyzed with only one error term
used in the model, misleading and invalid conclusions can be drawn
from the results. For a more detailed discussion of these designs and
the appropriate analysis procedures, see Milliken, Analysis of Messy
Data, Vol. 1.

Strip-Plot Designs

Strip-plot
desgins often
result from
experiments
that are
conducted
over two or
more process
steps

Similar to a split-plot design, a strip-plot design can result when some
type of restricted randomization has occurred during the experiment. A
simple factorial design can result in a strip-plot design depending on
how the experiment was conducted. Strip-plot designs often result
from experiments that are conducted over two or more process steps in
which each process step is a batch process, i.e., completing each
treatment combination of the experiment requires more than one
processing step with experimental units processed together at each
process step. As in the split-plot design, strip-plot designs result when
the randomization in the experiment has been restricted in some way.
As a result of the restricted randomization that occurs in strip-plot
designs, there are multiple sizes of experimental units. Therefore, there
are different error terms or different error variances that are used to test
the factors of interest in the design. A traditional strip-plot design has

5.5.5. How can I account for nested variation (restricted randomization)?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri55.htm (9 of 12) [7/1/2003 4:16:27 PM]



three sizes of experimental units.

Example with
two steps and
three factor
variables

Consider the following example from the semiconductor industry. An
experiment requires an implant step and an anneal step. At both the
anneal and the implant steps there are three factors to test. The implant
process accommodates 12 wafers in a batch, and implanting a single
wafer under a specified set of conditions is not practical nor does doing
so represent economical use of the implanter. The anneal furnace can
handle up to 100 wafers.

Explanation
of the
diagram that
illustrates the
design
structure of
the example

The figure below shows the design structure for how the experiment
was run. The rectangles at the top of the diagram represent the settings
for a two-level factorial design for the three factors in the implant step
(A, B, C). Similarly, the rectangles at the lower left of the diagram
represent a two-level factorial design for the three factors in the anneal
step (D, E, F).

The arrows connecting each set of rectangles to the grid in the center
of the diagram represent a randomization of trials in the experiment.
The horizontal elements in the grid represent the experimental units for
the anneal factors. The vertical elements in the grid represent the
experimental units for the implant factors. The intersection of the
vertical and horizontal elements represents the experimental units for
the interaction effects between the implant factors and the anneal
factors. Therefore, this experiment contains three sizes of experimental
units, each of which has a unique error term for estimating the
significance of effects.

Diagram of
the split-plot
design

5.5.5. How can I account for nested variation (restricted randomization)?
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FIGURE 5.16  Diagram of a strip-plot design involving two
process steps with three factors in each step

Physical
meaning of
the
experimental
units

To put actual physical meaning to each of the experimental units in the
above example, consider each cell in the grid as an individual wafer. A
batch of eight wafers goes through the implant step first. According to
the figure, treatment combination #3 in factors A, B, and C is the first
implant treatment run. This implant treatment is applied to all eight
wafers at once. Once the first implant treatment is finished, another set
of eight wafers is implanted with treatment combination #5 of factors
A, B, and C. This continues until the last batch of eight wafers is
implanted with treatment combination #6 of factors A, B, and C. Once
all of the eight treatment combinations of the implant factors have
been run, the anneal step starts. The first anneal treatment combination
to be run is treatment combination #5 of factors D, E, and F. This
anneal treatment combination is applied to a set of eight wafers, with
each of these eight wafers coming from one of the eight implant
treatment combinations. After this first batch of wafers has been
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annealed, the second anneal treatment is applied to a second batch of
eight wafers, with these eight wafers coming from one each of the
eight implant treatment combinations. This is continued until the last
batch of eight wafers has been implanted with a particular combination
of factors D, E, and F.

Three sizes of
experimental
units

Running the experiment in this way results in a strip-plot design with
three sizes of experimental units. A set of eight wafers that are
implanted together is the experimental unit for the implant factors A,
B, and C and for all of their interactions. There are eight experimental
units for the implant factors. A different set of eight wafers are
annealed together. This different set of eight wafers is the second size
experimental unit and is the experimental unit for the anneal factors D,
E, and F and for all of their interactions. The third size experimental
unit is a single wafer. This is the experimental unit for all of the
interaction effects between the implant factors and the anneal factors.

Replication Actually, the above figure of the strip-plot design represents one block
or one replicate of this experiment. If the experiment contains no
replication and the model for the implant contains only the main
effects and two-factor interactions, the three-factor interaction term
A*B*C (1 degree of freedom) provides the error term for the
estimation of effects within the implant experimental unit. Invoking a
similar model for the anneal experimental unit produces the
three-factor interaction term D*E*F for the error term (1 degree of
freedom) for effects within the anneal experimental unit.

Further
information

For more details about strip-plot designs, see Milliken and Johnson
(1987) or Miller (1997).
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5. Process Improvement
5.5. Advanced topics

5.5.6.What are Taguchi designs?

Taguchi
designs are
related to
fractional
factorial
designs -
many of which
are large
screening
designs

Genichi Taguchi, a Japanese engineer, proposed several approaches to experimental
designs that are sometimes called "Taguchi Methods." These methods utilize two-,
three-, and mixed-level fractional factorial designs. Large screening designs seem to
be particularly favored by Taguchi adherents.

Taguchi refers to experimental design as "off-line quality control" because it is a
method of ensuring good performance in the design stage of products or processes.
Some experimental designs, however, such as when used in evolutionary operation,
can be used on-line while the process is running. He has also published a booklet of
design nomograms ("Orthogonal Arrays and Linear Graphs," 1987, American
Supplier Institute) which may be used as a design guide, similar to the table of
fractional factorial designs given previously in Section 5.3. Some of the well-known
Taguchi orthogonal arrays (L9, L18, L27 and L36) were given earlier when
three-level, mixed-level and fractional factorial designs were discussed.

If these were the only aspects of "Taguchi Designs," there would be little additional
reason to consider them over and above our previous discussion on factorials.
"Taguchi" designs are similar to our familiar fractional factorial designs. However,
Taguchi has introduced several noteworthy new ways of conceptualizing an
experiment that are very valuable, especially in product development and industrial
engineering, and we will look at two of his main ideas, namely Parameter Design
and Tolerance Design.

Parameter Design

Taguchi
advocated
using inner
and outer
array designs
to take into
account noise
factors (outer)
and design
factors (inner)

The aim here is to make a product or process less variable (more robust) in the face
of variation over which we have little or no control. A simple fictitious example
might be that of the starter motor of an automobile that has to perform reliably in
the face of variation in ambient temperature and varying states of battery weakness.
The engineer has control over, say, number of armature turns, gauge of armature
wire, and ferric content of magnet alloy.

Conventionally, one can view this as an experiment in five factors. Taguchi has
pointed out the usefulness of viewing it as a set-up of three inner array factors
(turns, gauge, ferric %) over which we have design control, plus an outer array of
factors over which we have control only in the laboratory (temperature, battery
voltage).
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Pictorial
representation
of Taguchi
designs

Pictorially, we can view this design as being a conventional design in the inner
array factors (compare Figure 3.1) with the addition of a "small" outer array
factorial design at each corner of the "inner array" box.

Let I1 = "turns," I2 = "gauge," I3 = "ferric %," E1 = "temperature," and E2 =
"voltage." Then we construct a 23 design "box" for the I's, and at each of the eight
corners so constructed, we place a 22 design "box" for the E's, as is shown in Figure
5.17.

FIGURE 5.17  Inner 23 and outer 22 arrays for robust design
with `I' the inner array, `E' the outer array.

An example of
an inner and
outer array
designed
experiment

We now have a total of 8x4 = 32 experimental settings, or runs. These are set out in
Table 5.7, in which the 23 design in the I's is given in standard order on the left of
the table and the 22 design in the E's is written out sideways along the top. Note that
the experiment would not be run in the standard order but should, as always, have
its runs randomized. The output measured is the percent of (theoretical) maximum
torque.

5.5.6. What are Taguchi designs?
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Table showing
the Taguchi
design and the
responses
from the
experiment

TABLE 5.7  Design table, in standard order(s) for the parameter
design of Figure 5.9

Run
Number  1 2 3 4

  

 I1 I2 I3
E1
E2

-1
-1

+1
-1

-1
+1

+1
+1

Output
MEAN

Output
STD. DEV

  
1 -1 -1 -1  75 86 67 98 81.5 13.5
2 +1 -1 -1  87 78 56 91 78.0 15.6
3 -1 +1 -1  77 89 78  8 63.0 37.1
4 +1 +1 -1  95 65 77 95 83.0 14.7
5 -1 -1 +1  78 78 59 94 77.3 14.3
6 +1 -1 +1  56 79 67 94 74.0 16.3
7 -1 +1 +1  79 80 66 85 77.5  8.1
8 +1 +1 +1  71 80 73 95 79.8 10.9

Interpretation
of the table

Note that there are four outputs measured on each row. These correspond to the four
`outer array' design points at each corner of the `outer array' box. As there are eight
corners of the outer array box, there are eight rows in all.

Each row yields a mean and standard deviation % of maximum torque. Ideally there
would be one row that had both the highest average torque and the lowest standard
deviation (variability). Row 4 has the highest torque and row 7 has the lowest
variability, so we are forced to compromise. We can't simply `pick the winner.'

Use contour
plots to see
inside the box

One might also observe that all the outcomes occur at the corners of the design
`box', which means that we cannot see `inside' the box. An optimum point might
occur within the box, and we can search for such a point using contour plots.
Contour plots were illustrated in the example of response surface design analysis
given in Section 4.

Fractional
factorials

Note that we could have used fractional factorials for either the inner or outer array
designs, or for both.

Tolerance Design
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Taguchi also
advocated
tolerance
studies to
determine,
based on a
loss or cost
function,
which
variables have
critical
tolerances
that need to
be tightened

This section deals with the problem of how, and when, to specify tightened
tolerances for a product or a process so that quality and performance/productivity
are enhanced. Every product or process has a number—perhaps a large number—of
components. We explain here how to identify the critical components to target
when tolerances have to be tightened.

It is a natural impulse to believe that the quality and performance of any item can
easily be improved by merely tightening up on some or all of its tolerance
requirements. By this we mean that if the old version of the item specified, say,
machining to ± 1 micron, we naturally believe that we can obtain better
performance by specifying machining to ± ½ micron.

This can become expensive, however, and is often not a guarantee of much better
performance. One has merely to witness the high initial and maintenance costs of
such tight-tolerance-level items as space vehicles, expensive automobiles, etc. to
realize that tolerance design—the selection of critical tolerances and the
re-specification of those critical tolerances—is not a task to be undertaken without
careful thought. In fact, it is recommended that only after extensive parameter
design studies have been completed should tolerance design be performed as a last
resort to improve quality and productivity.

Example

Example:
measurement
of electronic
component
made up of
two
components

Customers for an electronic component complained to their supplier that the
measurement reported by the supplier on the as-delivered items appeared to be
imprecise. The supplier undertook to investigate the matter.

The supplier's engineers reported that the measurement in question was made up of
two components, which we label x and y, and the final measurement M was reported
according to the standard formula

M = K x/y

with `K' a known physical constant. Components x and y were measured separately
in the laboratory using two different techniques, and the results combined by
software to produce M. Buying new measurement devices for both components
would be prohibitively expensive, and it was not even known by how much the x or
y component tolerances should be improved to produce the desired improvement in
the precision of M.
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Taylor series
expansion

Assume that in a measurement of a standard item the `true' value of x is xo and for y
it is yo. Let f(x, y) = M; then the Taylor Series expansion for f(x, y) is

with all the partial derivatives, `df/dx', etc., evaluated at (xo, yo).

Apply formula
to M

Applying this formula to M(x, y) = Kx/y, we obtain

It is assumed known from experience that the measurements of x show a
distribution with an average value xo, and with a standard deviation x = 0.003
x-units.

Assume
distribution of
x is normal

In addition, we assume that the distribution of x is normal. Since 99.74% of a
normal distribution's range is covered by 6 , we take 3 x = 0.009 x-units to be the
existing tolerance Tx for measurements on x. That is, Tx = ± 0.009 x-units is the
`play' around xo that we expect from the existing measurement system.

Assume
distribution of
y is normal

It is also assumed known that the y measurements show a normal distribution
around yo, with standard deviation y = 0.004 y-units. Thus Ty = ± 3 y = ±0.012.

Worst case
values

Now ±Tx and ±Ty may be thought of as `worst case' values for (x-xo) and (y-yo).
Substituting Tx for (x-xo) and Ty for (y-yo) in the expanded formula for M(x, y), we
have

Drop some
terms

The  and TxTy terms, and all terms of higher order, are going to be at least an

order of magnitude smaller than terms in Tx and in Ty, and for this reason we drop
them, so that
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Worst case
Euclidean
distance

Thus, a `worst case' Euclidean distance  of M(x, y) from its ideal value Kxo/yo is
(approximately)

This shows the relative contributions of the components to the variation in the
measurement.

Economic
decision

As yo is a known quantity and reduction in Tx and in Ty each carries its own price
tag, it becomes an economic decision whether one should spend resources to reduce
Tx or Ty, or both.

Simulation an
alternative to
Taylor series
approximation

In this example, we have used a Taylor series approximation to obtain a simple
expression that highlights the benefit of Tx and Ty. Alternatively, one might
simulate values of M = K*x/y, given a specified (Tx,Ty) and (x0,y0), and then
summarize the results with a model for the variability of M as a function of (Tx,Ty).

Functional
form may not
be available

In other applications, no functional form is available and one must use
experimentation to empirically determine the optimal tolerance design. See
Bisgaard and Steinberg (1997).
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5. Process Improvement
5.5. Advanced topics

5.5.7.What are John's 3/4 fractional
factorial designs?

John's
designs
require only
3/4 of the
number of
runs a full
2n factorial
would
require

Three-quarter (¾) designs are two-level factorial designs that require
only three-quarters of the number of runs of the `original' design. For
example, instead of making all of the sixteen runs required for a 24

fractional factorial design, we need only run 12 of them. Such designs
were invented by Professor Peter John of the University of Texas, and
are sometimes called`John's ¾ designs.'

Three-quarter fractional factorial designs can be used to save on
resources in two different contexts. In one scenario, we may wish to
perform additional runs after having completed a fractional factorial, so
as to de-alias certain specific interaction patterns. Second , we may wish
to use a ¾ design to begin with and thus save on 25% of the run
requirement of a regular design.

Semifolding Example

Four
experimental
factors

We have four experimental factors to investigate, namely X1, X2, X3,
and X4, and we have designed and run a 24-1 fractional factorial design.
Such a design has eight runs, or rows, if we don't count center point
runs (or replications).

Resolution
IV design

The 24-1 design is of resolution IV, which means that main effects are
confounded with, at worst, three-factor interactions, and two-factor
interactions are confounded with other two factor interactions.
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Design
matrix

The design matrix, in standard order, is shown in Table 5.8 along with
all the two-factor interaction columns. Note that the column for X4 is
constructed by multiplying columns for X1, X2, and X3 together (i.e.,
4=123).

Table 5.8  The 24-1 design plus 2-factor interaction columns shown
in standard order. Note that 4=123.

Run   Two-Factor Interaction Columns
Number X1 X2 X3 X4  X1*X2 X1*X3 X1*X4 X2*X3 X2*X4 X3*X4

  
1 -1 -1 -1 -1  +1 +1 +1 +1 +1 +1
2 +1 -1 -1 +1  -1 -1 +1 +1 -1 -1
3 -1 +1 -1 +1  -1 +1 -1 -1 +1 -1
4 +1 +1 -1 -1  +1 -1 -1 -1 -1 +1
5 -1 -1 +1 +1  +1 -1 -1 -1 -1 +1
6 +1 -1 +1 -1  -1 +1 -1 -1 +1 -1
7 -1 +1 +1 -1  -1 -1 +1 +1 -1 -1
8 +1 +1 +1 +1  +1 +1 +1 +1 +1 +1

Confounding
of two-factor
interactions

Note also that 12=34, 13=24, and 14=23. These follow from the
generating relationship 4=123 and tells us that we cannot estimate any
two-factor interaction that is free of some other two-factor alias.

Estimating
two-factor
interactions
free of
confounding

Suppose that we became interested in estimating some or all of the
two-factor interactions that involved factor X1; that is, we want to
estimate one or more of the interactions 12, 13, and 14 free of
two-factor confounding.

One way of doing this is to run the `other half' of the design—an
additional eight rows formed from the relationship 4 = -123. Putting
these two `halves' together—the original one and the new one, we'd
obtain a 24 design in sixteen runs. Eight of these runs would already
have been run, so all we'd need to do is run the remaining half.

Alternative
method
requiring
fewer runs

There is a way, however, to obtain what we want while adding only four
more runs. These runs are selected in the following manner: take the
four rows of Table 5.8 that have `-1' in the `X1' column and switch the
`-' sign under X1 to `+' to obtain the four-row table of Table 5.9. This is
called a foldover on X1, choosing the subset of runs with X1 = -1. Note
that this choice of 4 runs is not unique, and that if the initial design
suggested that X1 = -1 were a desirable level, we would have chosen to
experiment at the other four treatment combinations that were omitted
from the initial design.
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Table of the
additional
design
points

TABLE 5.9  Foldover on `X1' of the 24-1

design of Table 5.5

Run
Number X1 X2 X3 X4

 9 +1 -1 -1 -1
10 +1 +1 -1 +1
11 +1 -1 +1 +1
12 +1 +1 +1 -1

Table with
new design
points added
to the
original
design
points

Add this new block of rows to the bottom of Table 5.8 to obtain a
design in twelve rows. We show this in Table 5.10 and also add in the
two-factor interactions as well for illustration (not needed when we do
the runs).

TABLE 5.10  A twelve-run design based on the 24-1 also showing all
two-factor interaction columns

Run   Two-Factor Interaction Columns
Number X1 X2 X3 X4  X1*X2 X1*X3 X1*X4 X2*X3 X2*X4 X3*X4

  
1 -1 -1 -1 -1  +1 +1 +1 +1 +1 +1
2 +1 -1 -1 +1  -1 -1 +1 +1 -1 -1
3 -1 +1 -1 +1  -1 +1 -1 -1 +1 -1
4 +1 +1 -1 -1  +1 -1 -1 -1 -1 +1
5 -1 -1 +1 +1  +1 -1 -1 -1 -1 +1
6 +1 -1 +1 -1  -1 +1 -1 -1 +1 -1
7 -1 +1 +1 -1  -1 -1 +1 +1 -1 -1
8 +1 +1 +1 +1  +1 +1 +1 +1 +1 +1
1 +1 -1 -1 -1  -1 -1 -1 +1 +1 +1

10 +1 +1 -1 +1  +1 -1 +1 -1 +1 -1
11 +1 -1 +1 +1  -1 +1 +1 -1 -1 +1
12 +1 +1 +1 -1  +1 +1 -1 +1 -1 -1

Design is
resolution V

Examine the two-factor interaction columns and convince yourself that
no two are alike. This means that no two-factor interaction involving X1
is aliased with any other two-factor interaction. Thus, the design is
resolution V, which is not always the case when constructing these
types of ¾ foldover designs.
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Estimating
X1
two-factor
interactions

What we now have is a design with 12 runs, with which we can estimate
all the two-factor interactions involving X1 free of aliasing with any
other two-factor interaction. It is called a ¾ design because it has ¾ the
number of rows of the next regular factorial design (a 24).

Standard
errors of
effect
estimates

If one fits a model with an intercept, a block effect, the four main effects
and the six two-factor interactions, then each coefficient has a standard
error of /81/2 - instead of /121/2 - because the design is not
orthogonal and each estimate is correlated with two other estimates.
Note that no degrees of freedom exists for estimating . Instead, one
should plot the 10 effect estimates using a normal (or half-normal)
effects plot to judge which effects to declare significant.

Further
information

For more details on ¾ fractions obtained by adding a follow-up design
that is half the size of the original design, see Mee and Peralta (2000).

Next we consider an example in which a ¾ fraction arises when the (¾)
2k-p design is planned from the start because it is an efficient design that
allows estimation of a sufficient number of effects.

A 48-Run 3/4 Design Example

Estimate all
main effects
and
two-factor
interactions
for 8 factors

Suppose we wish to run an experiment for k=8 factors, with which we
want to estimate all main effects and two-factor interactions. We could
use the  design described in the summary table of fractional
factorial designs, but this would require a 64-run experiment to estimate
the 1 + 8 + 28 = 37 desired coefficients. In this context, and especially
for larger resolution V designs, ¾ of the design points will generally
suffice.

Construction
of the 48-run
design

The 48 run-design is constructed as follows: start by creating the full
 design using the generators 7 = 1234 and 8 = 1256. The defining

relation is I = 12347 = 12568 = 345678 (see the summary table details
for this design).

Next, arrange these 64 treatment combinations into four blocks of size
16, blocking on the interactions 135 and 246 (i.e., block 1 has 135 = 246
= -1 runs, block 2 has 135 = -1, 246 = +1, block 3 has 135 = +1, 246 =
-1 and block 4 has 135 = 246 = +1). If we exclude the first block in
which 135 = 246 = -1, we have the desired ¾ design reproduced below
(the reader can verify that these are the runs described in the summary
table, excluding the runs numbered 1, 6, 11, 16, 18, 21, 28, 31, 35, 40,
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41,46, 52, 55, 58 and 61).

Table
containing
the design
matrix

X1 X2 X3 X4 X5 X6 X7 X8
+1 -1 -1 -1 -1 -1 -1 -1
-1 +1 -1 -1 -1 -1 -1 -1
+1 +1 -1 -1 -1 -1 +1 +1
-1 -1 +1 -1 -1 -1 -1 +1
-1 +1 +1 -1 -1 -1 +1 -1
+1 +1 +1 -1 -1 -1 -1 +1
-1 -1 -1 +1 -1 -1 -1 +1
+1 -1 -1 +1 -1 -1 +1 -1
+1 +1 -1 +1 -1 -1 -1 +1
-1 -1 +1 +1 -1 -1 +1 +1
+1 -1 +1 +1 -1 -1 -1 -1
-1 +1 +1 +1 -1 -1 -1 -1
-1 -1 -1 -1 +1 -1 +1 -1
-1 +1 -1 -1 +1 -1 -1 +1
+1 +1 -1 -1 +1 -1 +1 -1
+1 -1 +1 -1 +1 -1 +1 +1
-1 +1 +1 -1 +1 -1 +1 +1
+1 +1 +1 -1 +1 -1 -1 -1
-1 -1 -1 +1 +1 -1 -1 -1
+1 -1 -1 +1 +1 -1 +1 +1
-1 +1 -1 +1 +1 -1 +1 +1
-1 -1 +1 +1 +1 -1 +1 -1
+1 -1 +1 +1 +1 -1 -1 +1
+1 +1 +1 +1 +1 -1 +1 -1
-1 -1 -1 -1 -1 +1 +1 -1
+1 -1 -1 -1 -1 +1 -1 +1
+1 +1 -1 -1 -1 +1 +1 -1
-1 -1 +1 -1 -1 +1 -1 -1
+1 -1 +1 -1 -1 +1 +1 +1
-1 +1 +1 -1 -1 +1 +1 +1
+1 -1 -1 +1 -1 +1 +1 +1
-1 +1 -1 +1 -1 +1 +1 +1
+1 +1 -1 +1 -1 +1 -1 -1
-1 -1 +1 +1 -1 +1 +1 -1
-1 +1 +1 +1 -1 +1 -1 +1
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+1 +1 +1 +1 -1 +1 +1 -1
-1 -1 -1 -1 +1 +1 +1 +1
+1 -1 -1 -1 +1 +1 -1 -1
-1 +1 -1 -1 +1 +1 -1 -1
-1 -1 +1 -1 +1 +1 -1 +1
+1 -1 +1 -1 +1 +1 +1 -1
+1 +1 +1 -1 +1 +1 -1 +1
-1 -1 -1 +1 +1 +1 -1 +1
-1 +1 -1 +1 +1 +1 +1 -1
+1 +1 -1 +1 +1 +1 -1 +1
+1 -1 +1 +1 +1 +1 -1 -1
-1 +1 +1 +1 +1 +1 -1 -1
+1 +1 +1 +1 +1 +1 +1 +1

Good
precision for
coefficient
estimates

This design provides 11 degrees of freedom for error and also provides
good precision for coefficient estimates (some of the coefficients have a
standard error of  and some have a standard error of

).

Further
information

More about John's ¾ designs can be found in John (1971) or Diamond
(1989).

5.5.7. What are John's 3/4 fractional factorial designs?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri57.htm (6 of 6) [7/1/2003 4:16:29 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


5. Process Improvement
5.5. Advanced topics

5.5.8.What are small composite designs?

Small
composite
designs save
runs,
compared to
Resolution V
response
surface
designs, by
adding star
points to a
Resolution
III design

Response surface designs (RSD) were described earlier. A typical RSD
requires about 13 runs for 2 factors, 20 runs for 3 factors, 31 runs for 4
factors, and 32 runs for 5 factors. It is obvious that, once you have four
or more factors you wish to include in a RSD, you will need more than
one lot (i.e., batch) of experimental units for your basic design. This is
what most statistical software today will give you, including RS/1,
JMP, and SAS. However, there is a way to cut down on the number of
runs, as suggested by H.O. Hartley in his paper 'Smallest Composite
Designs for Quadratic Response Surfaces', published in Biometrics,
December 1959.

This method addresses the theory that using a Resolution V design as
the smallest fractional design to create a RSD is unnecessary. The
method adds star points to designs of Resolution III and uses the star
points to clear the main effects of aliasing with the two-factor
interactions. The resulting design allows estimation of the higher-order
interactions. It also provides poor interaction coefficient estimates and
should not be used unless the error variability is negligible compared to
the systematic effects of the factors.

Useful for 4
or 5 factors

This could be particularly useful when you have a design containing
four or five factors and you wish to only use the experimental units
from one lot (i.e., batch).

Table
containing
design
matrix for
four factors

The following is a design for four factors. You would want to
randomize these runs before implementing them; -1 and +1 represent
the low and high settings, respectively, of each factor.

5.5.8. What are small composite designs?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri58.htm (1 of 3) [7/1/2003 4:16:29 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


TABLE 5.11 Four factors: Factorial design section is
based on a generator of I = X1*X2*X3, Resolution III; -
and +  are the star points, calculated beyond the factorial

range; 0 represents the midpoint of the factor range.
Row X1 X2 X3 X4

1 +1 -1 -1 -1
2 -1 +1 -1 -1
3 -1 -1 +1 -1
4 +1 +1 +1 -1
5 +1 -1 -1 +1
6 -1 +1 -1 +1
7 -1 -1 +1 +1
8 +1 +1 +1 +1
9 - 0 0 0

10 0 0 0
11 0 - 0 0
12 0 0 0
13 0 0 - 0
14 0 0 0
15 0 0 0 -
16 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0

Determining  in Small Composite Designs

 based on
number of
treatment
combinations
in the
factorial
portion

To maintain rotatability for usual CCD's, the value of  is determined
by the number of treatment combinations in the factorial portion of the
central composite design:

Small
composite
designs not
rotatable

However, small composite designs are not rotatable, regardless of the
choice of . For small composite designs,  should not be smaller than
[number of factorial runs]1/4 nor larger than k1/2.

5.5.8. What are small composite designs?
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5. Process Improvement
5.5. Advanced topics

5.5.9.An EDA approach to experimental
design

Introduction This section presents an exploratory data analysis (EDA) approach to
analyzing the data from a designed experiment. This material is meant to
complement, not replace, the more model-based approach for analyzing
experiment designs given in section 4 of this chapter.

Choosing an appropriate design is discussed in detail in section 3 of this
chapter.

Starting point

Problem
category

The problem category we will address is the screening problem. Two
characteristics of screening problems are:

There are many factors to consider.1.  

Each of these factors may be either continuous or discrete.2.  

Desired
output

The desired output from the analysis of a screening problem is:

A ranked list (by order of importance) of factors.●   

The best settings for each of the factors.●   

A good model.●   

Insight.●   

Problem
essentials

The essentials of the screening problem are:

There are k factors with n observations.●   

The generic model is:

Y = f(X1, X2, ..., Xk)

●   

5.5.9. An EDA approach to experimental design
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Design type In particular, the EDA approach is applied to 2k full factorial and 2k-p

fractional factorial designs.

An EDA approach is particularly applicable to screening designs because we
are in the preliminary stages of understanding our process.

EDA
philosophy

EDA is not a single technique. It is an approach to analyzing data.

EDA is data-driven. That is, we do not assume an initial model. Rather,
we attempt to let the data speak for themselves.

●   

EDA is question-based. That is, we select a technique to answer one or
more questions.

●   

EDA utilizes multiple techniques rather than depending on a single
technique. Different plots have a different basis, focus, and
sensitivities, and therefore may bring out different aspects of the data.
When multiple techniques give us a redundancy of conclusions, this
increases our confidence that our conclusions are valid. When they
give conflicting conclusions, this may be giving us a clue as to the
nature of our data.

●   

EDA tools are often graphical. The primary objective is to provide
insight into the data, which graphical techniques often provide more
readily than quantitative techniques.

●   

10-Step
process

The following is a 10-step EDA process for analyzing the data from 2k full
factorial and 2k-p fractional factorial designs.

Ordered data plot1.  

Dex scatter plot2.  

Dex mean plot3.  

Interaction effects matrix plot4.  

Block plot5.  

DEX Youden plot6.  

|Effects| plot7.  

Half-normal probability plot8.  

Cumulative residual standard deviation plot9.  

DEX contour plot10.  

Each of these plots will be presented with the following format:

Purpose of the plot●   

Output of the plot●   

Definition of the plot●   

5.5.9. An EDA approach to experimental design
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Motivation for the plot●   

An example of the plot using the defective springs data●   

A discussion of how to interpret the plot●   

Conclusions we can draw from the plot for the defective springs data●   

Data set

Defective
springs data

The plots presented in this section are demonstrated with a data set from Box
and Bisgaard (1987).

These data are from a 23 full factorial data set that contains the following
variables:

Response variable Y = percentage of springs without cracks1.  

Factor 1 = oven temperature (2 levels: 1450 and 1600 F)2.  

Factor 2 = carbon concentration (2 levels: .5% and .7%)3.  

Factor 3 = quench temperature (2 levels: 70 and 120 F)4.  

     Y         X1              X2            X3
  Percent     Oven           Carbon        Quench
Acceptable  Temperature  Concentration   Temperature
----------------------------------------------------
    67         -1              -1            -1
    79         +1              -1            -1
    61         -1              +1            -1
    75         +1              +1            -1
    59         -1              -1            +1
    90         +1              -1            +1
    52         -1              +1            +1
    87         +1              +1            +1

You can read this file into Dataplot with the following commands:

SKIP 25
READ BOXSPRIN.DAT Y X1 X2 X3

5.5.9. An EDA approach to experimental design
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.1.Ordered data plot

Purpose The ordered data plot answers the following two questions:

What is the best setting (based on the data) for each of the k factors?1.  

What is the most important factor?2.  

In the above two questions, the terms "best" and "important" need more precise definitions.

Settings may be declared as "best" in three different ways:

"best" with respect to the data;1.  

"best" on average;2.  

"best" with respect to predicted values from an adequate model.3.  

In the worst case, each of the above three criteria may yield different "best settings". If that
occurs, then the three answers must be consolidated at the end of the 10-step process.

The ordered data plot will yield best settings based on the first criteria (data). That is, this
technique yields those settings that correspond to the best response value, with the best value
dependent upon the project goals:

maximization of the response;1.  

minimization of the response;2.  

hitting a target for the response.3.  

This, in turn, trivially yields the best response value:

maximization: the observed maximum data point;1.  

minimization: the observed minimum data point;2.  

target: the observed data value closest to the specified target.3.  

With respect to the most "important" factor, this by default refers to the single factor which
causes the greatest change in the value of the response variable as we proceed from the "-" setting
to the "+" setting of the factor. In practice, if a factor has one setting for the best and near-best
response values and the opposite setting for the worst and near-worst response values, then that
factor is usually the most important factor.

Output The output from the ordered data plot is:

Primary: Best setting for each of the k factors.1.  

Secondary: The name of the most important factor.2.  

5.5.9.1. Ordered data plot
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Definition An ordered data plot is formed by:

Vertical Axis: The ordered (smallest to largest) raw response value for each of the n runs in
the experiment.

●   

Horizontal Axis: The corresponding dummy run index (1 to n) with (at each run) a
designation of the corresponding settings (- or +) for each of the k factors.

●   

In essence, the ordered data plot may be viewed as a scatter plot of the ordered data versus a
single n-treatment consolidation factor.

Motivation To determine the best setting, an obvious place to start is the best response value. What
constitutes "best"? Are we trying to maximize the response, minimize the response, or hit a
specific target value? This non-statistical question must be addressed and answered by the
analyst. For example, if the project goal is ultimately to achieve a large response, then the desired
experimental goal is maximization. In such a case, the analyst would note from the plot the
largest response value and the corresponding combination of the k-factor settings that yielded that
best response.

Plot for
defective
springs
data

Applying the ordered response plot for the defective springs data set yields the following plot.

5.5.9.1. Ordered data plot
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How to
interpret

From the ordered data plot, we look for the following:

best settings;1.  

most important factor.2.  

Best Settings (Based on the Data):

At the best (highest or lowest or target) response value, what are the corresponding settings for
each of the k factors? This defines the best setting based on the raw data.

Most Important Factor:

For the best response point and for the nearby neighborhood of near-best response points, which
(if any) of the k factors has consistent settings? That is, for the subset of response values that is
best or near-best, do all of these values emanate from an identical level of some factor?

Alternatively, for the best half of the data, does this half happen to result from some factor with a
common setting? If yes, then the factor that displays such consistency is an excellent candidate
for being declared the "most important factor". For a balanced experimental design, when all of
the best/near-best response values come from one setting, it follows that all of the
worst/near-worst response values will come from the other setting of that factor. Hence that factor
becomes "most important".

At the bottom of the plot, step though each of the k factors and determine which factor, if any,
exhibits such behavior. This defines the "most important" factor.

Conclusions
for the
defective
springs
data

The application of the ordered data plot to the defective springs data set results in the following
conclusions:

Best Settings (Based on the Data):

(X1,X2,X3) = (+,-,+) = (+1,-1,+1) is the best setting since

the project goal is maximization of the percent acceptable springs;1.  

Y = 90 is the largest observed response value; and2.  

(X1,X2,X3) = (+,-,+) at Y = 90.3.  

1.  

Most important factor:

X1 is the most important factor since the four largest response values (90, 87, 79, and 75)
have factor X1 at +1, and the four smallest response values (52, 59, 61, and 67) have factor
X1 at -1.

2.  

5.5.9.1. Ordered data plot
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5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.2.Dex scatter plot

Purpose The dex (design of experiments) scatter plot answers the following three questions:

What are the most important factors?1.  

What is the best setting for each of these important factors?2.  

What data points are outliers?3.  

In the above questions, the terms "important", "best", and "outliers" need clarification and
specificity:

Important

A factor can be "important" if it leads to a significant shift in either the location or the variation of
the response variable as we go from the "-" setting to the "+" setting of the factor. Both
definitions are relevant and acceptable. The default definition of "important" in
engineering/scientific applications is a shift in location. Unless specified otherwise, when a factor
is claimed to be important, the implication is that the factor caused a large location shift in the
response.

Best

A factor setting is "best" if it results in a typical response that is closest, in location, to the desired
project goal (maximization, minimization, target). This desired project goal is an engineering, not
a statistical, question, and so the desired optimization goal must be specified by the engineer.

Outlier

A data point is an "outlier" if it comes from a different probability distribution or from a different
deterministic model than the remainder of the data. A single outlier in a data set can affect all
effect estimates and so in turn can potentially invalidate the factor rankings in terms of
importance.

Given the above definitions, the dex scatter plot is a useful early-step tool for determining the
important factors, best settings, and outliers. An alternate name for the dex scatter plot is "main
effects plot".

Output The output for the dex scatter plot is:

Primary: Identification of the important factors.1.  

Secondary: Best setting for these factors and identification of outliers.2.  

Definition The dex scatter plot is formed by

Vertical Axis: The response (= the raw data) for a given setting (- or +) of a factor for each
of the k factors.

●   

Horizontal Axis: The k factors, and the two settings (- and +) within each factor.●   

5.5.9.2. Dex scatter plot
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Motivation The scatter plot is the primary data analysis tool for determining if and how a response relates to
another factor. Determining if such a relationship exists is a necessary first step in converting
statistical association to possible engineering cause-and-effect. Looking at how the raw data
change as a function of the different levels of a factor is a fundamental step which, it may be
argued, should never be skipped in any data analysis.

From such a foundational plot, the analyst invariably extracts information dealing with location
shifts, variation shifts, and outliers. Such information may easily be washed out by other "more
advanced" quantitative or graphical procedures (even computing and plotting means!). Hence
there is motivation for the dex scatter plot.

If we were interested in assessing the importance of a single factor, and since "important" by
default means shift in location, then the simple scatter plot is an ideal tool. A large shift (with
little data overlap) in the body of the data from the "-" setting to the "+" setting of a given factor
would imply that the factor is important. A small shift (with much overlap) would imply the
factor is not important.

The dex scatter plot is actually a sequence of k such scatter plots with one scatter plot for each
factor.

Plot for
defective
springs
data

The dex scatter plot for the defective springs data set is as follows.

5.5.9.2. Dex scatter plot
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How to
interpret

As discussed previously, the dex scatter plot is used to look for the following:

Most Important Factors;1.  

Best Settings of the Most Important Factors;2.  

Outliers.3.  

Each of these will be discussed in turn.

Most Important Factors:

For each of the k factors, as we go from the "-" setting to the "+" setting within the factor, is there
a location shift in the body of the data? If yes, then

Which factor has the biggest such data location shift (that is, has least data overlap)? This
defines the "most important factor".

1.  

Which factor has the next biggest shift (that is, has next least data overlap)? This defines
the "second most important factor".

2.  

Continue for the remaining factors.3.  

In practice, the dex scatter plot will typically only be able to discriminate the most important
factor (largest shift) and perhaps the second most important factor (next largest shift). The degree
of overlap in remaining factors is frequently too large to ascertain with certainty the ranking for
other factors.

Best Settings for the Most Important Factors:

For each of the most important factors, which setting ("-" or "+") yields the "best" response?

In order to answer this question, the engineer must first define "best". This is done with respect to
the overall project goal in conjunction with the specific response variable under study. For some
experiments (e.g., maximizing the speed of a chip), "best" means we are trying to maximize the
response (speed). For other experiments (e.g., semiconductor chip scrap), "best" means we are
trying to minimize the response (scrap). For yet other experiments (e.g., designing a resistor)
"best" means we are trying to hit a specific target (the specified resistance). Thus the definition of
"best" is an engineering precursor to the determination of best settings.

Suppose the analyst is attempting to maximize the response. In such a case, the analyst would
proceed as follows:

For factor 1, for what setting (- or +) is the body of the data higher?1.  

For factor 2, for what setting (- or +) is the body of the data higher?2.  

Continue for the remaining factors.3.  

The resulting k-vector of best settings:

(x1best, x2best, ..., xkbest)

is thus theoretically obtained by looking at each factor individually in the dex scatter plot and
choosing the setting (- or +) that has the body of data closest to the desired optimal (maximal,
minimal, target) response.

As indicated earlier, the dex scatter plot will typically be able to estimate best settings for only the
first few important factors. Again, the degree of data overlap precludes ascertaining best settings
for the remaining factors. Other tools, such as the dex mean plot, will do a better job of
determining such settings.

Outliers:

Do any data points stand apart from the bulk of the data? If so, then such values are candidates for

5.5.9.2. Dex scatter plot
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further investigation as outliers. For multiple outliers, it is of interest to note if all such anomalous
data cluster at the same setting for any of the various factors. If so, then such settings become
candidates for avoidance or inclusion, depending on the nature (bad or good), of the outliers.

Conclusions
for the
defective
springs
data

The application of the dex scatter plot to the defective springs data set results in the following
conclusions:

Most Important Factors:

X1 (most important);1.  

X2 (of lesser importance);2.  

X3 (of least importance).3.  

that is,

factor 1 definitely looks important;❍   

factor 2 is a distant second;❍   

factor 3 has too much overlap to be important with respect to location, but is flagged
for further investigation due to potential differences in variation.

❍   

1.  

Best Settings:

(X1,X2,X3) = (+,-,- = (+1,-1,-1)

2.  

Outliers: None detected.3.  

5.5.9.2. Dex scatter plot
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5.5.9. An EDA approach to experimental design

5.5.9.3.Dex mean plot

Purpose The dex (design of experiments) mean plot answers the following two questions:

What is the ranked list of factors (not including the interactions)? The ranking is from the
most important factor to least important factor.

1.  

What is the best setting for each of the k factors?2.  

In the above two questions, the terms "important" and "best" need clarification and specificity.

A factor can be important if it leads to a significant shift in the location of the response variable
as we go from the "-" setting of the factor to the "+" setting of the factor. Alternatively, a factor
can be important if it leads to a significant change in variation (spread) as we go from the "-" to
the "+" settings. Both definitions are relevant and acceptable. The default definition of
"important" in engineering/scientific applications is the former (shift in location). Unless
specified to the contrary, when a factor is claimed to be important, the implication is that the
factor caused a large location shift in the response.

In this context, a factor setting is best if it results in a typical response that is closest (in location)
to the desired project goal (that is, a maximization, minimization, or hitting a target). This desired
project goal is an engineering, not a statistical, question, and so the desired optimization goal
must be overtly specified by the engineer.

Given the above two definitions of important and best, the dex mean plot is a useful tool for
determining the important factors and for determining the best settings.

An alternate name for the dex mean plot is the "main effects plot".

Output The output from the dex mean plot is:

Primary: A ranked list of the factors (not including interactions) from most important to
least important.

1.  

Secondary: The best setting for each of the k factors.2.  

Definition The dex mean plot is formed by:

Vertical Axis: The mean response for a given setting ("-" or "+") of a factor, for each of the
k factors.

●   

Horizontal Axis: The k factors and the two settings ("-" and "+") within each factor.●   

5.5.9.3. Dex mean plot
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Motivation If we were interested in assessing the importance of a single factor, and since important, by
default, means shift in location, and the average is the simplest location estimator, a reasonable
graphics tool to assess a single factor's importance would be a simple mean plot. The vertical axis
of such a plot would be the mean response for each setting of the factor and the horizontal axis is
the two settings of the factor: "-" and "+" (-1 and +1). A large difference in the two means would
imply the factor is important while a small difference would imply the factor is not important.

The dex mean plot is actually a sequence of k such plots, with one mean plot for each factor. To
assist in comparability and relative importance, all of the mean plots are on the same scale.

Plot for
defective
springs
data

Applying the dex mean plot to the defective springs data yields the following plot.

5.5.9.3. Dex mean plot
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How to
interpret

From the dex mean plot, we look for the following:

A ranked list of factors from most important to least important.1.  

The best settings for each factor (on average).2.  

Ranked List of Factors--Most Important to Least Important:

For each of the k factors, as we go from the "-" setting to the "+" setting for the factor, is there a
shift in location of the average response?

If yes, we would like to identify the factor with the biggest shift (the "most important factor"), the
next biggest shift (the "second most important factor"), and so on until all factors are accounted
for.

Since we are only plotting the means and each factor has identical (-,+) = (-1,+1) coded factor
settings, the above simplifies to

What factor has the steepest line? This is the most important factor.1.  

The next steepest line? This is the second most important factor.2.  

Continue for the remaining factors.3.  

This ranking of factors based on local means is the most important step in building the definitive
ranked list of factors as required in screening experiments.

Best Settings (on Average):

For each of the k factors, which setting (- or +) yields the "best" response?

In order to answer this, the engineer must first define "best". This is done with respect to the
overall project goal in conjunction with the specific response variable under study. For some
experiments, "best" means we are trying to maximize the response (e.g., maximizing the speed of
a chip). For other experiments, "best" means we are trying to minimize the response (e.g.,
semiconductor chip scrap). For yet other experiments, "best" means we are trying to hit a specific
target (e.g., designing a resistor to match a specified resistance). Thus the definition of "best" is a
precursor to the determination of best settings.

For example, suppose the analyst is attempting to maximize the response. In that case, the analyst
would proceed as follows:

For factor 1, what setting (- or +) has the largest average response?1.  

For factor 2, what setting (- or +) has the largest average response?2.  

Continue for the remaining factors.3.  

The resulting k-vector of best settings:

(x1best, x2best, ..., xkbest)

is in general obtained by looking at each factor individually in the dex mean plot and choosing
that setting (- or +) that has an average response closest to the desired optimal (maximal, minimal,
target) response.

This candidate for best settings is based on the averages. This k-vector of best settings should be
similar to that obtained from the dex scatter plot, though the dex mean plot is easier to interpret.

5.5.9.3. Dex mean plot
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Conclusions
for the
defective
springs
data

The application of the dex mean plot to the defective springs data set results in the following
conclusions:

Ranked list of factors (excluding interactions):

X1 (most important). Qualitatively, this factor looks definitely important.1.  

X2 (of lesser importantance). Qualitatively, this factor is a distant second to X1.2.  

X3 (unimportant). Qualitatively, this factor appears to be unimportant.3.  

1.  

Best settings (on average):

(X1,X2,X3) = (+,-,+) = (+1,-1,+1)

2.  

5.5.9.3. Dex mean plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.4. Interaction effects matrix plot

Purpose The interaction effects matrix plot is an extension of the dex mean plot to include both main
effects and 2-factor interactions (the dex mean plot focuses on main effects only). The interaction
effects matrix plot answers the following two questions:

What is the ranked list of factors (including 2-factor interactions), ranked from most
important to least important; and

1.  

What is the best setting for each of the k factors?2.  

For a k-factor experiment, the effect on the response could be due to main effects and various
interactions all the way up to k-term interactions. As the number of factors, k, increases, the total
number of interactions increases exponentially. The total number of possible interactions of all
orders = 2k - 1 - k. Thus for k = 3, the total number of possible interactions = 4, but for k = 7 the
total number of possible interactions = 120.

In practice, the most important interactions are likely to be 2-factor interactions. The total number
of possible 2-factor interactions is

Thus for k = 3, the number of 2-factor interactions = 3, while for k = 7, the number of 2-factor
interactions = 21.

It is important to distinguish between the number of interactions that are active in a given
experiment versus the number of interactions that the analyst is capable of making definitive
conclusions about. The former depends only on the physics and engineering of the problem. The
latter depends on the number of factors, k, the choice of the k factors, the constraints on the
number of runs, n, and ultimately on the experimental design that the analyst chooses to use. In
short, the number of possible interactions is not necessarily identical to the number of
interactions that we can detect.

Note that

with full factorial designs, we can uniquely estimate interactions of all orders;1.  

with fractional factorial designs, we can uniquely estimate only some (or at times no)
interactions; the more fractionated the design, the fewer interactions that we can estimate.

2.  

Output The output for the interaction effects matrix plot is

Primary: Ranked list of the factors (including 2-factor interactions) with the factors are
ranked from important to unimportant.

1.  

Secondary: Best setting for each of the k factors.2.  

5.5.9.4. Interaction effects matrix plot
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Definition The interaction effects matrix plot is an upper right-triangular matrix of mean plots consisting of
k main effects plots on the diagonal and k*(k-1)/2 2-factor interaction effects plots on the
off-diagonal.

In general, interactions are not the same as the usual (multiplicative) cross-products. However,
for the special case of 2-level designs coded as (-,+) = (-1 +1), the interactions are identical to
cross-products. By way of contrast, if the 2-level designs are coded otherwise (e.g., the (1,2)
notation espoused by Taguchi and others), then this equivalance is not true. Mathematically,

{-1,+1} x {-1,+1} => {-1,+1}

but

{1,2} x {1,2} => {1,2,4}

Thus, coding does make a difference. We recommend the use of the (-,+) coding.

It is remarkable that with the - and + coding, the 2-factor interactions are dealt with, interpreted,
and compared in the same way that the k main effects are handled. It is thus natural to include
both 2-factor interactions and main effects within the same matrix plot for ease of comparison.

For the off-diagonal terms, the first construction step is to form the horizontal axis values, which
will be the derived values (also - and +) of the cross-product. For example, the settings for the
X1*X2 interaction are derived by simple multiplication from the data as shown below.

X1 X2 X1*X2
- - +
+ - -
- + -
+ + +

Thus X1, X2, and X1*X2 all form a closed (-, +) system. The advantage of the closed system is
that graphically interactions can be interpreted in the exact same fashion as the k main effects.

After the entire X1*X2 vector of settings has been formed in this way, the vertical axis of the
X1*X2 interaction plot is formed:

the plot point above X1*X2 = "-" is simply the mean of all response values for which
X1*X2 = "-"

1.  

the plot point above X1*X2 = "+" is simply the mean of all response values for which
X1*X2 = "+".

2.  

We form the plots for the remaining 2-factor interactions in a similar fashion.

All the mean plots, for both main effects and 2-factor interactions, have a common scale to
facilitate comparisons. Each mean plot has

Vertical Axis: The mean response for a given setting (- or +) of a given factor or a given
2-factor interaction.

1.  

Horizontal Axis: The 2 settings (- and +) within each factor, or within each 2-factor
interaction.

2.  

Legend:

A tag (1, 2, ..., k, 12, 13, etc.), with 1 = X1, 2 = X2, ..., k = Xk, 12 = X1*X2, 13 =
X1*X3, 35 = X3*X5, 123 = X1*X2*X3, etc.) which identifies the particular mean
plot; and

1.  

The least squares estimate of the factor (or 2-factor interaction) effect. These effect
estimates are large in magnitude for important factors and near-zero in magnitude for
unimportant factors.

2.  

3.  

5.5.9.4. Interaction effects matrix plot
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In a later section, we discuss in detail the models associated with full and fraction factorial 2-level
designs. One such model representation is

Written in this form (with the leading 0.5), it turns out that the . are identically the effect due to
factor X. Further, the least squares estimate turns out to be, due to orthogonality, the simple
difference of means at the + setting and the - setting. This is true for the k main factors. It is also
true for all 2-factor and multi-factor interactions.

Thus, visually, the difference in the mean values on the plot is identically the least squares
estimate for the effect. Large differences (steep lines) imply important factors while small
differences (flat lines) imply unimportant factors.

In earlier sections, a somewhat different form of the model is used (without the leading 0.5). In
this case, the plotted effects are not necessarily equivalent to the least squares estimates. When
using a given software program, you need to be aware what convention for the model the
software uses. In either case, the effects matrix plot is still useful. However, the estimates of the
coefficients in the model are equal to the effect estimates only if the above convention for the
model is used.

Motivation As discussed in detail above, the next logical step beyond main effects is displaying 2-factor
interactions, and this plot matrix provides a convenient graphical tool for examining the relative
importance of main effects and 2-factor interactions in concert. To do so, we make use of the
striking aspect that in the context of 2-level designs, the 2-factor interactions are identical to
cross-products and the 2-factor interaction effects can be interpreted and compared the same way
as main effects.

Plot for
defective
springs
data

Constructing the interaction effects matrix plot for the defective springs data set yields the
following plot.

5.5.9.4. Interaction effects matrix plot
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How to
interpret

From the interaction effects matrix, we can draw three important conclusions:

Important Factors (including 2-factor interactions);1.  

Best Settings;2.  

Confounding Structure (for fractional factorial designs).3.  

We discuss each of these in turn.

Important factors (including 2-factor interactions):

Jointly compare the k main factors and the k*(k-1)/2 2-factor interactions. For each of these
subplots, as we go from the "-" setting to the "+" setting within a subplot, is there a shift in
location of the average data (yes/no)? Since all subplots have a common (-1, +1) horizontal
axis, questions involving shifts in location translate into questions involving steepness of
the mean lines (large shifts imply steep mean lines while no shifts imply flat mean lines).

Identify the factor or 2-factor interaction that has the largest shift (based on
averages). This defines the "most important factor". The largest shift is determined
by the steepest line.

1.  

Identify the factor or 2-factor interaction that has the next largest shift (based on
averages). This defines the "second most important factor". This shift is determined
by the next steepest line.

2.  

Continue for the remaining factors.3.  

This ranking of factors and 2-factor interactions based on local means is a major step in
building the definitive list of ranked factors as required for screening experiments.

1.  

Best settings:2.  

5.5.9.4. Interaction effects matrix plot
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For each factor (of the k main factors along the diagonal), which setting (- or +) yields the
"best" (highest/lowest) average response?

Note that the experimenter has the ability to change settings for only the k main factors, not
for any 2-factor interactions. Although a setting of some 2-factor interaction may yield a
better average response than the alternative setting for that same 2-factor interaction, the
experimenter is unable to set a 2-factor interaction setting in practice. That is to say, there
is no "knob" on the machine that controls 2-factor interactions; the "knobs" only control the
settings of the k main factors.

How then does this matrix of subplots serve as an improvement over the k best settings that
one would obtain from the dex mean plot? There are two common possibilities:

Steep Line:

For those main factors along the diagonal that have steep lines (that is, are
important), choose the best setting directly from the subplot. This will be the same as
the best setting derived from the dex mean plot.

1.  

Flat line:

For those main factors along the diagonal that have flat lines (that is, are
unimportant), the naive conclusion to use either setting, perhaps giving preference to
the cheaper setting or the easier-to-implement setting, may be unwittingly incorrect.
In such a case, the use of the off-diagonal 2-factor interaction information from the
interaction effects matrix is critical for deducing the better setting for this nominally
"unimportant" factor.

To illustrate this, consider the following example:

Suppose the factor X1 subplot is steep (important) with the best setting for X1
at "+".

■   

Suppose the factor X2 subplot is flat (unimportant) with both settings yielding
about the same mean response.

■   

Then what setting should be used for X2? To answer this, consider the following two
cases:

Case 1. If the X1*X2 interaction plot happens also to be flat (unimportant),
then choose either setting for X2 based on cost or ease.

1.  

Case 2. On the other hand, if the X1*X2 interaction plot is steep (important),
then this dictates a prefered setting for X2 not based on cost or ease.

2.  

To be specific for case 2, if X1*X2 is important, with X1*X2 = "+" being the better
setting, and if X1 is important, with X1 = "+" being the better setting, then this
implies that the best setting for X2 must be "+" (to assure that X1*X2 (= +*+) will
also be "+"). The reason for this is that since we are already locked into X1 = "+",
and since X1*X2 = "+" is better, then the only way we can obtain X1*X2 = "+" with
X1 = "+" is for X2 to be "+" (if X2 were "-", then X1*X2 with X1 = "+" would yield
X1*X2 = "-").

In general, if X1 is important, X1*X2 is important, and X2 is not important, then
there are 4 distinct cases for deciding what the best setting is for X2:

X1 X1*X2 => X2
+ + +
+ - -
- + -

2.  

5.5.9.4. Interaction effects matrix plot
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- - +

By similar reasoning, examining each factor and pair of factors, we thus arrive at a
resulting vector of the k best settings:

(x1best, x2best, ..., xkbest)

This average-based k-vector should be compared with best settings k-vectors
obtained from previous steps (in particular, from step 1 in which the best settings
were drawn from the best data value).

When the average-based best settings and the data-based best settings agree, we
benefit from the increased confidence given our conclusions.

When the average-based best settings and the data-based best settings disagree, then
what settings should the analyst finally choose? Note that in general the
average-based settings and the data-based settings will invariably be identical for all
"important" factors. Factors that do differ are virtually always "unimportant". Given
such disagreement, the analyst has three options:

Use the average-based settings for minor factors. This has the advantage of a
broader (average) base of support.

1.  

Use the data-based settings for minor factors. This has the advantage of
demonstrated local optimality.

2.  

Use the cheaper or more convenient settings for the local factor. This has the
advantage of practicality.

3.  

Thus the interaction effects matrix yields important information not only about the ranked
list of factors, but also about the best settings for each of the k main factors. This matrix of
subplots is one of the most important tools for the experimenter in the analysis of 2-level
screening designs.

Confounding Structure (for Fractional Factorial Designs)

When the interaction effects matrix is used to analyze 2-level fractional (as opposed to full)
factorial designs, important additional information can be extracted from the matrix
regarding confounding structure.

It is well-known that all fractional factorial designs have confounding, a property whereby
every estimated main effect is confounded/contaminated/biased by some high-order
interactions. The practical effect of this is that the analyst is unsure of how much of the
estimated main effect is due to the main factor itself and how much is due to some
confounding interaction. Such contamination is the price that is paid by examining k
factors with a sample size n that is less than a full factorial n = 2k runs.

It is a "fundamental theorem" of the discipline of experimental design that for a given
number of factors k and a given number of runs n, some fractional factorial designs are
better than others. "Better" in this case means that the intrinsic confounding that must exist
in all fractional factorial designs has been minimized by the choice of design. This
minimization is done by constructing the design so that the main effect confounding is
pushed to as high an order interaction as possible.

The rationale behind this is that in physical science and engineering systems it has been
found that the "likelihood" of high-order interactions being significant is small (compared
to the likelihood of main effects and 2-factor interactions being significant). Given this, we
would prefer that such inescapable main effect confounding be with the highest order
interaction possible, and hence the bias to the estimated main effect be as small as possible.

3.  

5.5.9.4. Interaction effects matrix plot
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The worst designs are those in which the main effect confounding is with 2-factor
interactions. This may be dangerous because in physical/engineering systems, it is quite
common for Nature to have some real (and large) 2-factor interactions. In such a case, the
2-factor interaction effect will be inseparably entangled with some estimated main effect,
and so the experiment will be flawed in that

ambiguous estimated main effects and1.  

an ambiguous list of ranked factors2.  

will result.

If the number of factors, k, is large and the number of runs, n, is constrained to be small,
then confounding of main effects with 2-factor interactions is unavoidable. For example, if
we have k = 7 factors and can afford only n = 8 runs, then the corresponding 2-level
fractional factorial design is a 27-4 which necessarily will have main effects confounded
with (3) 2-factor interactions. This cannot be avoided.

On the other hand, situations arise in which 2-factor interaction confounding with main
effects results not from constraints on k or n, but on poor design construction. For example,
if we have k = 7 factors and can afford n = 16 runs, a poorly constructed design might have
main effects counfounded with 2-factor interactions, but a well-constructed design with the
same k = 7, n = 16 would have main effects confounded with 3-factor interactions but no
2-factor interactions. Clearly, this latter design is preferable in terms of minimizing main
effect confounding/contamination/bias.

For those cases in which we do have main effects confounded with 2-factor interactions, an
important question arises:

For a particular main effect of interest, how do we know which 2-factor
interaction(s) confound/contaminate that main effect?

The usual answer to this question is by means of generator theory, confounding tables, or
alias charts. An alternate complementary approach is given by the interaction effects
matrix. In particular, if we are examining a 2-level fractional factorial design and

if we are not sure that the design has main effects confounded with 2-factor
interactions, or

1.  

if we are sure that we have such 2-factor interaction confounding but are not sure
what effects are confounded,

2.  

then how can the interaction effects matrix be of assistance? The answer to this question is
that the confounding structure can be read directly from the interaction effects matrix.

For example, for a 7-factor experiment, if, say, the factor X3 is confounded with the
2-factor interaction X2*X5, then

the appearance of the factor X3 subplot and the appearance of the 2-factor interaction
X2*X5 subplot will necessarily be identical, and

1.  

the value of the estimated main effect for X3 (as given in the legend of the main
effect subplot) and the value of the estimated 2-factor interaction effect for X2*X5
(as given in the legend of the 2-factor interaction subplot) will also necessarily be
identical.

2.  

The above conditions are necessary, but not sufficient for the effects to be confounded.

Hence, in the abscence of tabular descriptions (from your statistical software program) of
the confounding structure, the interaction effect matrix offers the following graphical
alternative for deducing confounding structure in fractional factorial designs:

5.5.9.4. Interaction effects matrix plot
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scan the main factors along the diagonal subplots and choose the subset of factors
that are "important".

1.  

For each of the "important" factors, scan all of the 2-factor interactions and compare
the main factor subplot and estimated effect with each 2-factor interaction subplot
and estimated effect.

2.  

If there is no match, this implies that the main effect is not confounded with any
2-factor interaction.

3.  

If there is a match, this implies that the main effect may be confounded with that
2-factor interaction.

4.  

If none of the main effects are confounded with any 2-factor interactions, we can
have high confidence in the integrity (non-contamination) of our estimated main
effects.

5.  

In practice, for highly-fractionated designs, each main effect may be confounded
with several 2-factor interactions. For example, for a 27-4 fractional factorial design,
each main effect will be confounded with three 2-factor interactions. These 1 + 3 = 4
identical subplots will be blatantly obvious in the interaction effects matrix.

6.  

Finally, what happens in the case in which the design the main effects are not confounded
with 2-factor interactions (no diagonal subplot matches any off-diagonal subplot). In such a
case, does the interaction effects matrix offer any useful further insight and information?

The answer to this question is yes because even though such designs have main effects
unconfounded with 2-factor interactions, it is fairly common for such designs to have
2-factor interactions confounded with one another, and on occasion it may be of interest to
the analyst to understand that confounding. A specific example of such a design is a 24-1

design formed with X4 settings = X1*X2*X3. In this case, the 2-factor-interaction
confounding structure may be deduced by comparing all of the 2-factor interaction subplots
(and effect estimates) with one another. Identical subplots and effect estimates hint strongly
that the two 2-factor interactions are confounded. As before, such comparisons provide
necessary (but not sufficient) conditions for confounding. Most statistical software for
analyzing fractional factorial experiments will explicitly list the confounding structure.

Conclusions
for the
defective
springs
data

The application of the interaction effects matrix plot to the defective springs data set results in the
following conclusions:

Ranked list of factors (including 2-factor interactions):

X1 (estimated effect = 23.0)1.  

X1*X3 (estimated effect = 10.0)2.  

X2 (estimated effect = -5.0)3.  

X3 (estimated effect = 1.5)4.  

X1*X2 (estimated effect = 1.5)5.  

X2*X3 (estimated effect = 0.0)6.  

Factor 1 definitely looks important. The X1*X3 interaction looks important. Factor 2 is of
lesser importance. All other factors and 2-factor interactions appear to be unimportant.

1.  

Best Settings (on the average):

(X1,X2,X3) = (+,-,+) = (+1,-1,+1)

2.  

5.5.9.4. Interaction effects matrix plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.5.Block plot

Purpose The block plot answers the following two general questions:

What are the important factors (including interactions)?1.  

What are the best settings for these important factors?2.  

The basic (single) block plot is a multifactor EDA technique to determine if a factor is important
and to ascertain if that importance is unconditional (robust) over all settings of all other factors in
the system. In an experimental design context, the block plot is actually a sequence of block plots
with one plot for each of the k factors.

Due to the ability of the block plot to determine whether a factor is important over all settings of
all other factors, the block plot is also referred to as a dex robustness plot.

Output The block plot provides specific information on

Important factors (of the k factors and the  2-factor interactions); and1.  

Best settings of the important factors.2.  

Definition The block plot is a series of k basic block plots with each basic block plot for a main effect. Each
basic block plot asks the question as to whether that particular factor is important:

The first block plot asks the question: "Is factor X1 important?1.  

The second block plot asks the question: "Is factor X2 important?2.  

Continue for the remaining factors.3.  

The i-th basic block plot, which targets factor i and asks whether factor Xi is important, is formed
by:

Vertical Axis: Response●   

Horizontal Axis: All 2k-1 possible combinations of the (k-1) non-target factors (that is,
"robustness" factors). For example, for the block plot focusing on factor X1 from a 23 full
factorial experiment, the horizontal axis will consist of all 23-1 = 4 distinct combinations of
factors X2 and X3. We create this robustness factors axis because we are interested in
determining if X1 is important robustly. That is, we are interested in whether X1 is
important not only in a general/summary kind of way, but also whether the importance of X
is universally and consistently valid over each of the 23-1 = 4 combinations of factors X2
and X3. These 4 combinations are (X2,X3) = (+,+), (+,-), (-,+), and (-,-). The robustness
factors on the horizontal axis change from one block plot to the next. For example, for the k
= 3 factor case:

the block plot targeting X1 will have robustness factors X2 and X3;1.  

the block plot targeting X2 will have robustness factors X1 and X3;2.  

●   

5.5.9.5. Block plot
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the block plot targeting X3 will have robustness factors X1 and X2.3.  

Plot Character: The setting (- or +) for the target factor Xi. Each point in a block plot has an
associated setting for the target factor Xi. If Xi = "-", the corresponding plot point will be
"-"; if Xi = "+", the corresponding plot point will be "+".

●   

For a particular combination of robustness factor settings (horizontally), there will be two points
plotted above it (vertically):

one plot point for Xi = "-"; and1.  

the other plot point for Xi = "+".2.  

In a block plot, these two plot points are surrounded by a box (a block) to focus the eye on the
internal within-block differences as opposed to the distraction of the external block-to-block
differences. Internal block differences reflect on the importance of the target factor (as desired).
External block-to-block differences reflect on the importance of various robustness factors, which
is not of primary interest.

Large within-block differences (that is, tall blocks) indicate a large local effect on the response
which, since all robustness factors are fixed for a given block, can only be attributed to the target
factor. This identifies an "important" target factor. Small within-block differences (small blocks)
indicate that the target factor Xi is unimportant.

For a given block plot, the specific question of interest is thus

Is the target factor Xi important? That is, as we move within a block from the target factor
setting of "-" to the target factor setting of "+", does the response variable value change by
a large amount?

The height of the block reflects the "local" (that is, for that particular combination of robustness
factor settings) effect on the response due to a change in the target factor settings. The "localized"
estimate for the target factor effect for Xi is in fact identical to the difference in the response
between the target factor Xi at the "+" setting and at the "-" setting. Each block height of a
robustness plot is thus a localized estimate of the target factor effect.

In summary, important factors will have both

consistently large block heights; and1.  

consistent +/- sign arrangements2.  

where the "consistency" is over all settings of robustness factors. Less important factors will have
only one of these two properties. Unimportant factors will have neither property.

Plot for
defective
springs
data

Applying the ordered response plot to the defective springs data set yields the following plot.

5.5.9.5. Block plot
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How to
interpret

From the block plot, we are looking for the following:

Important factors (including 2-factor interactions);1.  

Best settings for these factors.2.  

We will discuss each of these in turn.

Important factors (including 2-factor interactions):

Look at each of the k block plots. Within a given block plot,

Are the corresponding block heights consistently large as we scan across the within-plot
robustness factor settings--yes/no; and are the within-block sign patterns (+ above -, or -
above +) consistent across all robustness factors settings--yes/no?

To facilitate intercomparisons, all block plots have the same vertical axis scale. Across such block
plots,

Which plot has the consistently largest block heights, along with consistent arrangement of
within-block +'s and -'s? This defines the "most important factor".

1.  

Which plot has the consistently next-largest block heights, along with consistent
arrangement of within-block +'s and -'s? This defines the "second most important factor".

2.  

Continue for the remaining factors.3.  

This scanning and comparing of the k block plots easily leads to the identification of the most
important factors. This identification has the additional virtue over previous steps in that it is
robust. For a given important factor, the consistency of block heights and sign arrangement across
robustness factors gives additional credence to the robust importance of that factor. The factor is
important (the change in the response will be large) irrespective of what settings the robustness

5.5.9.5. Block plot
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factors have. Having such information is both important and comforting.

Important Special Case; Large but Inconsistent:

What happens if the block heights are large but not consistent? Suppose, for example, a 23

factorial experiment is being analyzed and the block plot focusing on factor X1 is being examined
and interpreted so as to address the usual question of whether factor X1 is important.

Let us consider in some detail how such a block plot might appear. This X1 block plot will have
23-1 = 4 combinations of the robustness factors X2 and X3 along the horizontal axis in the
following order:

(X2,X3) = (+,+); (X2,X3) = (+,-); (X2,X3) = (-,+); (X2,X3) = (-,-).

If the block heights are consistently large (with "+" above "-" in each block) over the 4
combinations of settings for X2 and X3, as in

(X2,X3) block height (= local X1 effect)
(+,+) 30
(+,-) 29
(-,+) 29
(-,-) 31

then from binomial considerations there is one chance in 24-1 = 1/8  12.5% of the the 4 local X1
effects having the same sign (i.e., all positive or all negative). The usual statistical cutoff of 5%
has not been achieved here, but the 12.5% is suggestive. Further, the consistency of the 4 X1
effects (all near 30) is evidence of a robustness of the X effect over the settings of the other two
factors. In summary, the above suggests:

Factor 1 is probably important (the issue of how large the effect has to be in order to be
considered important will be discussed in more detail in a later section); and

1.  

The estimated factor 1 effect is about 30 units.2.  

On the other hand, suppose the 4 block heights for factor 1 vary in the following cyclic way:

(X2,X3) block height (= local X1 effect)
(+,+) 30
(+,-) 20
(-,+) 30
(-,-) 20

then how is this to be interpreted?

The key here to such interpretation is that the block plot is telling us that the estimated X1 effect
is in fact at least 20 units, but not consistent. The effect is changing, but it is changing in a
structured way. The "trick" is to scan the X2 and X3 settings and deduce what that substructure is.
Doing so from the above table, we see that the estimated X1 effect is 30

for point 1 (X2,X3) = (+,+) and●   

for point 3 (X2,X3) = (-,+)●   

and then the estimated X1 effect drops 10 units to 20

for point 2 (X2,X3) = (+,-) and●   

for point 4 (X2,X3) = (-,-)●   

We thus deduce that the estimated X1 effect is

30 whenever X3 = "+"1.  

5.5.9.5. Block plot
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20 whenever X3 = "-"2.  

When the factor X1 effect is not consistent, but in fact changes depending on the setting of factor
X3, then definitionally that is said to be an "X1*X3 interaction". That is precisely the case here,
and so our conclusions would be:

factor X1 is probably important;1.  

the estimated factor X1 effect is 25 (= average of 30,20,30,and 20);2.  

the X1*X3 interaction is probably important;3.  

the estimated X1*X3 interaction is about 10 (= the change in the factor X1 effect as X3
changes = 30 - 20 = 10);

4.  

hence the X1*X3 interaction is less important than the X1 effect.5.  

Note that we are using the term important in a qualitative sense here. More precise determinations
of importance in terms of statistical or engineering significance are discussed in later sections.

The block plot gives us the structure and the detail to allow such conclusions to be drawn and to
be understood. It is a valuable adjunct to the previous analysis steps.

Best settings:

After identifying important factors, it is also of use to determine the best settings for these factors.
As usual, best settings are determined for main effects only (since main effects are all that the
engineer can control). Best settings for interactions are not done because the engineer has no
direct way of controlling them.

In the block plot context, this determination of best factor settings is done simply by noting which
factor setting (+ or -) within each block is closest to that which the engineer is ultimately trying to
achieve. In the defective springs case, since the response variable is % acceptable springs, we are
clearly trying to maximize (as opposed to minimize, or hit a target) the response and the ideal
optimum point is 100%. Given this, we would look at the block plot of a given important factor
and note within each block which factor setting (+ or -) yields a data value closest to 100% and
then select that setting as the best for that factor.

From the defective springs block plots, we would thus conclude that

the best setting for factor 1 is +;1.  

the best setting for factor 2 is -;2.  

the best setting for factor 3 cannot be easily determined.3.  

Conclusions
for the
defective
springs
data

In summary, applying the block plot to the defective springs data set results in the following
conclusions:

Unranked list of important factors (including interactions):

X1 is important;❍   

X2 is important;❍   

X1*X3 is important.❍   

1.  

Best Settings:

(X1,X2,X3) = (+,-,?) = (+1,-1,?)

2.  

5.5.9.5. Block plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.6.Dex Youden plot

Purpose The dex (design of experiments) Youden plot answers the following question:

What are the important factors (including interactions)?

In its original interlab rendition, the Youden plot was a graphical technique developed in the
1960's by Jack Youden of NIST for assessing between-lab biases and within-lab variation
problems in the context of interlab experimentation. In particular, it was appropriate for the
analysis of round-robin data when exactly two materials, batches, etc. were used in the design.

In a design of experiments context, we borrow this duality emphasis and apply it to 2-level
designs. The 2-component emphasis of the Youden plot makes it a natural to be applied to such
designs.

Output The dex Youden plot provides specific information on

Ranked list of factors (including interactions); and1.  

Separation of factors into two categories: important and unimportant.2.  

The primary output from a dex Youden plot is the ranked list of factors (out of the k factors and
interactions). For full factorial designs, interactions include the full complement of interactions at
all orders; for fractional factorial designs, interactions include only some, and occasionally none,
of the actual interactions. Further, the dex Youden plot yields information identifying which
factors/interactions are important and which are unimportant.

Definition The dex Youden plot consists of the following:

Vertical Axis: Mean response at the "+" setting for each factor and each interaction. For a
given factor or interaction, n/2 response values will go into computing the "+" mean.

●   

Horizontal Axis: Mean response at the "-" setting for each factor and each interaction. For a
given factor or interaction, n/2 response values will go into computing the "-" mean.

●   

Plot Character: Factor/interaction identification for which

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction
etc.

●   

In essence, the dex Youden plot is a scatter plot of the "+" average responses versus the "-"
average responses. The plot will consist of n - 1 points with one point for each factor and one
point for each (available) interaction. Each point on the plot is annotated to identify which factor
or interaction is being represented.

5.5.9.6. Dex Youden plot
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Motivation Definitionally, if a factor is unimportant, the "+" average will be approximately the same as
the "-" average, and if a factor is important, the "+" average will be considerably different
from the "-" average. Hence a plot that compares the "+" averages with the "-" averages
directly seems potentially informative.

From the definition above, the dex Youden plot is a scatter plot with the "+" averages on
the vertical axis and the "-" averages on the horizontal axis. Thus, unimportant factors will
tend to cluster in the middle of the plot and important factors will tend to be far removed
from the middle.

Because of an arithmetic identity which requires that the average of any corresponding "+"
and "-" means must equal the grand mean, all points on a dex Youden plot will lie on a -45
degree diagonal line. Or to put it another way, for each factor

average (+) + average (-) = constant (with constant = grand mean)
So

average (+) = constant - average (-)
Therefore, the slope of the line is -1 and all points lie on the line. Important factors will plot
well-removed from the center because average (+) = average (-) at the center.

Plot for
defective
springs
data

Applying the dex Youden plot for the defective springs data set yields the following plot.

5.5.9.6. Dex Youden plot
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How to
interpret

In the dex Youden plot, we look for the following:

A ranked list of factors (including interactions). The intersecting dotted lines at the center
of the plot are the value of the grand mean on both the vertical and horizontal axes. Scan
the points along the negative-slope diagonal line and note as to whether such points are
clustered around the grand mean or are displaced up or down the diagonal line.

Which point is farthest away from the center? This defines the "most important"
factor.

1.  

Which point is next farthest away from the center? This defines the "second most
important" factor.

2.  

Continue in a similar manner for the remaining points. The points closest to the
center define the "least important" factors.

3.  

1.  

Separation of factors into important/unimportant categories. Interpretationally, if a factor is
unimportant, the "+" average will be about the same as the "-" average, so the plot of "+"
vertically and "-" horizontally will be near the grand mean of all n - 1 data points.

Conversely, if a factor is important, the "+" average will differ greatly from the "-" average,
and so the plot of "+" vertically and "-" horizontally will be considerably displaced up into
the top left quadrant or down into the bottom right quadrant.

The separation of factors into important/unimportant categories is thus done by answering
the question:

Which points visually form a cluster around the center? (these define the
"unimportant factors"--all remaining factors are "important").

2.  

This ranked list of important factors derived from the dex Youden plot is to be compared with the
ranked lists obtained from previous steps. Invariably, there will be a large degree of consistency
exhibited across all/most of the techniques.

Conclusions
for the
defective
springs
data

The application of the dex Youden plot to the defective springs data set results in the following
conclusions:

Ranked list of factors (including interactions):

X1 (most important)1.  

X1*X3 (next most important)2.  

X23.  

other factors are of lesser importance4.  

1.  

Separation of factors into important/unimportant categories:

"Important": X1, X1*X3, and X2❍   

"Unimportant": the remainder❍   

2.  

5.5.9.6. Dex Youden plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.7. |Effects| plot

Purpose The |effects| plot answers the question:

What are the important factors (including interactions)?

Quantitatively, the question as to what is the estimated effect of a given factor or interaction and
what is its rank relative to other factors and interactions is answered via the least squares
estimation criterion (that is, forming effect estimates that minimize the sum of the squared
differences between the raw data and the fitted values from such estimates). Based on such an
estimation criterion, one could then construct a tabular list of the factors and interactions ordered
by the effect magnitude.

The |effects| plot provides a graphical representation of these ordered estimates, Pareto-style from
largest to smallest.

The |effects| plot, as presented here, yields both of the above: the plot itself, and the ranked list
table. Further, the plot also presents auxiliary confounding information, which is necessary in
forming valid conclusions for fractional factorial designs.

Output The output of the |effects| plot is:

Primary: A ranked list of important effects (and interactions). For full factorial designs,
interactions include the full complement of interactions at all orders; for fractional factorial
designs, interactions include only some, and occasionally none, of the actual interactions.

1.  

Secondary: Grouping of factors (and interactions) into two categories: important and
unimportant.

2.  

Definition The |effects| plot is formed by:

Vertical Axis: Ordered (largest to smallest) absolute value of the estimated effects for the
main factors and for (available) interactions. For n data points (no replication), typically
(n-1) effects will be estimated and the (n-1) |effects| will be plotted.

●   

Horizontal Axis : Factor/interaction identification:

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction,
etc.

●   

Far right margin : Factor/interaction identification (built-in redundancy):

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction

●   

5.5.9.7. |Effects| plot
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123 indicates the 3-factor X1*X2*X3 interaction,
etc.

If the design is a fractional factorial,the confounding structure is provided for main factors
and 2-factor interactions.

Upper right table: Ranked (largest to smallest by magnitude) list of the least squares
estimates for the main effects and for (available) interactions.

As before, if the design is a fractional factorial, the confounding structure is provided for
main factors and 2-factor interactions.

●   

The estimated effects that form the basis for the vertical axis are optimal in the least squares
sense. No other estimators exist that will yield a smaller sum of squared deviations between the
raw data and the fitted values based on these estimates.

For both the 2k full factorial designs and 2k-p fractional factorial designs, the form for the least
squares estimate of the factor i effect, the 2-factor interaction effect, and the multi-factor
interaction effect has the following simple form:

factor i effect = (+) - (-)

2-factor interaction effect = (+) - (-)

multi-factor interaction effect = (+) - (-)

with (+) denoting the average of all response values for which factor i (or the 2-factor or

multi-factor interaction) takes on a "+" value, and (-) denoting the average of all response
values for which factor i (or the 2-factor or multi-factor interaction) takes on a "-" value.

The essence of the above simplification is that the 2-level full and fractional factorial designs are
all orthogonal in nature, and so all off-diagonal terms in the least squares X'X matrix vanish.

Motivation Because of the difference-of-means definition of the least squares estimates, and because of the
fact that all factors (and interactions) are standardized by taking on values of -1 and +1
(simplified to - and +), the resulting estimates are all on the same scale. Therefore, comparing and
ranking the estimates based on magnitude makes eminently good sense.

Moreover, since the sign of each estimate is completely arbitrary and will reverse depending on
how the initial assignments were made (e.g., we could assign "-" to treatment A and "+" to
treatment B or just as easily assign "+" to treatment A and "-" to treatment B), forming a ranking
based on magnitudes (as opposed to signed effects) is preferred.

Given that, the ultimate and definitive ranking of factor and interaction effects will be made based
on the ranked (magnitude) list of such least squares estimates. Such rankings are given
graphically, Pareto-style, within the plot; the rankings are given quantitatively by the tableau in
the upper right region of the plot. For the case when we have fractional (versus full) factorial
designs, the upper right tableau also gives the confounding structure for whatever design was
used.

If a factor is important, the "+" average will be considerably different from the "-" average, and so
the absolute value of the difference will be large. Conversely, unimportant factors have small
differences in the averages, and so the absolute value will be small.

We choose to form a Pareto chart of such |effects|. In the Pareto chart, the largest effects (= most
important factors) will be presented first (to the left) and then progress down to the smallest
effects (= least important) factors) to the right.

5.5.9.7. |Effects| plot
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Plot for
defective
springs
data

Applying the |effects| plot to the defective springs data yields the following plot.

How to
interpret

From the |effects| plot, we look for the following:

The ranked list of factors (including interactions) is given by the left-to-right order of the
spikes. These spikes should be of decreasing height as we move from left to right. Note the
factor identifier associated with each of these bars.

1.  

Identify the important factors. Forming the ranked list of factors is important, but is only
half of the analysis. The second part of the analysis is to take the ranking and "draw the
(horizontal) line" in the list and on the graph so that factors above the line are deemed
"important while factors below the line are deemed unimportant.

Since factor effects are frequently a continuum ranging from the very large through the
moderate and down to the very small, the separation of all such factors into two groups
(important and unimportant) may seem arbitrary and severe. However, in practice, from
both a research funding and a modeling point of view, such a bifurcation is both common
and necessary.

From an engineering research-funding point of view, one must frequently focus on a subset
of factors for future research, attention, and money, and thereby necessarily set aside other
factors from any further consideration. From a model-building point of view, a final model
either has a term in it or it does not--there is no middle ground. Parsimonious models
require in-or-out decisions. It goes without saying that as soon as we have identified the
important factors, these are the factors that will comprise our (parsimonious) good model,
and those that are declared as unimportant will not be in the model.

2.  

5.5.9.7. |Effects| plot
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Given that, where does such a bifurcation line go?

There are four ways, each discussed in turn, to draw such a line:

Statistical significance;1.  

Engineering significance;2.  

Numerical significance; and3.  

Pattern significance.4.  

The ranked list and segregation of factors derived from the |effects| plot are to be compared with
the ranked list of factors obtained in previous steps. Invariably, there will be a considerable
degree of consistency exhibited across all of the techniques.

Conclusions
for the
defective
springs
data

The application of the |effects| plot to the defective springs data set results in the following
conclusions:

Ranked list of factors (including interactions):

X1 (most important)1.  

X1*X3 (next most important)2.  

X23.  

other factors are of lesser importance4.  

1.  

Separation of factors into important/unimportant categories:

Important: X1, X1*X3, and X2❍   

Unimportant: the remainder❍   

2.  

5.5.9.7. |Effects| plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.7. |Effects| plot

5.5.9.7.1.Statistical significance

Formal
statistical
methods

Formal statistical methods to answer the question of statistical
significance commonly involve the use of

ANOVA (analysis of variance); and●   

t-based confidence intervals for the effects.●   

ANOVA The virtue of ANOVA is that it is a powerful, flexible tool with many
applications. The drawback of ANOVA is that

it is heavily quantitative and non-intuitive;●   

it must have an assumed underlying model; and●   

its validity depends on assumptions of a constant error variance
and normality of the errors.

●   

t confidence
intervals

T confidence intervals for the effects, using the t-distribution, are also
heavily used for determining factor significance. As part of the t
approach, one first needs to determine sd(effect), the standard
deviation of an effect. For 2-level full and fractional factorial designs,
such a standard deviation is related to , the standard deviation of an
observation under fixed conditions, via the formula:

which in turn leads to forming 95% confidence intervals for an effect
via

c * sd(effect)

for an appropriate multiple c (from the t distribution). Thus in the
context of the |effects| plot, "drawing the line" at c * sd(effect) would
serve to separate, as desired, the list of effects into 2 domains:

significant (that is, important); and●   

not significant (that is, unimportant).●   

5.5.9.7.1. Statistical significance
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Estimating
sd(effect)

The key in the above approach is to determine an estimate for
sd(effect). Three statistical approaches are common:

Prior knowledge about :

If  is known, we can compute sd(effect) from the above
expression and make use of a conservative (normal-based) 95%
confidence interval by drawing the line at

This method is rarely used in practice because  is rarely
known.

1.  

Replication in the experimental design:

Replication will allow  to be estimated from the data without
depending on the correctness of a deterministic model. This is a
real benefit. On the other hand, the downside of such replication
is that it increases the number of runs, time, and expense of the
experiment. If replication can be afforded, this method should
be used. In such a case, the analyst separates important from
unimportant terms by drawing the line at

with t denoting the 97.5 percent point from the appropriate
Student's-t distribution.

2.  

Assume 3-factor interactions and higher are zero:

This approach "assumes away" all 3-factor interactions and
higher and uses the data pertaining to these interactions to
estimate . Specifically,

with h denoting the number of 3-factor interactions and higher,
and SSQ is the sum of squares for these higher-order effects.
The analyst separates important from unimportant effects by
drawing the line at

with t denoting the 97.5 percent point from the appropriate

3.  

5.5.9.7.1. Statistical significance
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(with h degrees of freedom) Student's-t distribution.

This method warrants caution:

it involves an untestable assumption (that such
interactions = 0);

❍   

it can result in an estimate for sd(effect) based on few
terms (even a single term); and

❍   

it is virtually unusable for highly-fractionated designs
(since high-order interactions are not directly estimable).

❍   

Non-statistical
considerations

The above statistical methods can and should be used. Additionally,
the non-statistical considerations discussed in the next few sections are
frequently insightful in practice and have their place in the EDA
approach as advocated here.

5.5.9.7.1. Statistical significance
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.7. |Effects| plot

5.5.9.7.2.Engineering significance

Engineering
cutoff

Draw the horizontal line on the chart at that value which you as an
engineer have declared beforehand as the engineering cutoff. Any
effect larger than this cutoff will be considered as significant from an
engineering point of view.

Specifying a
cutoff value
requires
non-statistical
thinking, but is
frequently
useful

This approach requires preliminary, data-free thinking on the part of
the analyst as to how big (= what number?) an effect (any effect) must
be before the analyst would "care" as an engineer/scientist? In other
words, in the units of the response variable, how much would the
response variable have to change consistently before the analyst
would say "that's a big enough change for me from an engineering
point of view"? An engineering number, a cutoff value, is needed
here. This value is non-statistical; thie value must emanate from the
engineer's head.

If upon reflection the analyst does not have such a value in mind, this
"engineering significance" approach would be set aside. From
experience, it has been found that the engineering soul-searching that
goes into evoking such a cutoff value is frequently useful and should
be part of the decision process, independent of statistical
considerations, of separating the effects into important/unimportant
categories.

A rough
engineering
cutoff

In the absence of a known engineering cutoff, a rough cutoff value is
commonly 5% or 10% of the average (or current) production
response for the system. Thus, if a chemical reaction production
process is yielding a reaction rate of about 70, then 5% of 70 = 3. The
engineer may declare any future effect that causes an average change
of 3 or more units in the response (that is, any estimated effect whose
magnitude exceeds 3) to be "engineering significant". In the context
of the |effects| plot, the engineer would draw the line at a height of 3
on the plot, and all effects that are above the line are delared as
significant and all below the line are declared not significant.

5.5.9.7.2. Engineering significance

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5972.htm (1 of 2) [7/1/2003 4:16:39 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.7. |Effects| plot

5.5.9.7.3.Numerical significance

10% of the
largest
effect

Note the height of the largest bar (= the magnitude of the largest effect).
Declare as "significant" any effect that exceeds 10% of the largest
effect. The 10% is arbitrary and has no statistical (or engineering) basis,
but it does have a "numeric" basis in that it results in keeping the largest
effect and any effects that are within 90% of the largest effect.

Apply with
caution

As with any rule-of-thumb, some caution should be used in applying
this critierion. Specifically, if the largest effect is in fact not very large,
this rule-of-thumb may not be useful.

5.5.9.7.3. Numerical significance
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.7. |Effects| plot

5.5.9.7.4.Pattern significance

Look for
L-shaped
pattern

The |effects| plot has a characteristic horizontally-elongated L-shaped
pattern. The vertical arm of the L consists of important factors. The
horizontal arm is comprised of unimportant factors. If a factor is
important, the bar height will be large and succeeding bar heights may
drop off considerably (perhaps by 50%)--such factors make up the left
arm of the L. On the other hand, if a factor is not important, its bar
height will tend to be small and near-zero--such factors make up the
bottom arm of the L. It is of interest to note where the kink is in the L.
Factors to the left of that kink are arguably declared important while
factors at the kink point and to the right of it are declared unimportant.

Factor
labels

As a consequence of this "kinking", note the labels on the far right
margin of the plot. Factors to the left and above the kink point tend to
have far-right labels distinct and isolated. Factors at, to the right, and
below the kink point tend to have far right labels that are overstruck and
hard to read. A (rough) rule-of-thumb would then be to declare as
important those factors/interactions whose far-right labels are easy to
distinguish, and to declare as unimportant those factors/interactions
whose far-right labels are overwritten and hard to distinguish.

5.5.9.7.4. Pattern significance
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.8.Half-normal probability plot

Purpose The half-normal probability plot answers the question:

What are the important factors (including interactions)?

Quantitatively, the estimated effect of a given main effect or interaction and its rank relative to
other main effects and interactions is given via least squares estimation (that is, forming effect
estimates that minimize the sum of the squared differences between raw data and the fitted values
from such estimates). Having such estimates in hand, one could then construct a list of the main
effects and interactions ordered by the effect magnitude.

The half-normal probability plot is a graphical tool that uses these ordered estimated effects to
help assess which factors are important and which are unimportant.

A half-normal distribution is the distribution of the |X| with X having a normal distribution.

Output The outputs from the half-normal probablity plot are

Primary: Grouping of factors and interactions into two categories: important and
unimportant. For full factorial designs, interactions include the full complement of
interactions of all orders; for fractional factorial designs, interactions include only some,
and occasionally none, of the actual interactions (when they aren't estimable).

1.  

Secondary: Ranked list of factors and interactions from most important down to least
important.

2.  

Definition A half-normal probability plot is formed by

Vertical Axis: Ordered (largest to smallest) absolute value of the estimated effects for the
main factors and available interactions. If n data points (no replication) have been
collected, then typically (n-1) effects will be estimated and the (n-1) |effects| will be
plotted.

●   

Horizontal Axis: (n-1) theoretical order statistic medians from a half-normal distribution.
These (n-1) values are not data-dependent. They depend only on the half-normal
distribution and the number of items plotted (= n-1). The theoretical medians represent an
"ideal" typical ordered data set that would have been obtained from a random drawing of
(n-1) samples from a half-normal distribution.

●   

Far right margin : Factor/interaction identification:

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction,
etc.

●   

5.5.9.8. Half-normal probability plot

http://www.itl.nist.gov/div898/handbook/pri/section5/pri598.htm (1 of 5) [7/1/2003 4:16:40 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35i.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm


If the design is a fractional factorial, the confounding structure is provided for main effects
and 2-factor interactions.

Motivation To provide a rationale for the half-normal probability plot, we first dicuss the motivation for the
normal probability plot (which also finds frequent use in these 2-level designs).

The basis for the normal probability plot is the mathematical form for each (and all) of the
estimated effects. As discussed for the |effects| plot, the estimated effects are the optimal least
squares estimates. Because of the orthogonality of the 2k full factorial and the 2k-p fractional
factorial designs, all least squares estimators for main effects and interactions simplify to the
form:

estimated effect = (+) - (-)

with (+) the average of all response values for which the factor or interaction takes on a "+"

value, and where (-) is the average of all response values for which the factor or interaction
takes on a "-" value.

Under rather general conditions, the Central Limit Thereom allows that the difference-of-sums
form for the estimated effects tends to follow a normal distribution (for a large enough sample
size n) a normal distribution.

The question arises as to what normal distribution; that is, a normal distribution with what mean
and what standard deviation? Since all estimators have an identical form (a difference of
averages), the standard deviations, though unknown, will in fact be the same under the
assumption of constant . This is good in that it simplifies the normality analysis.

As for the means, however, there will be differences from one effect to the next, and these
differences depend on whether a factor is unimportant or important. Unimportant factors are
those that have near-zero effects and important factors are those whose effects are considerably
removed from zero. Thus, unimportant effects tend to have a normal distribution centered
near zero while important effects tend to have a normal distribution centered at their
respective true large (but unknown) effect values.

In the simplest experimental case, if the experiment were such that no factors were
important (that is, all effects were near zero), the (n-1) estimated effects would behave like
random drawings from a normal distribution centered at zero. We can test for such
normality (and hence test for a null-effect experiment) by using the normal probability plot.
Normal probability plots are easy to interpret. In simplest terms:

if linear, then normal
If the normal probability plot of the (n-1) estimated effects is linear, this implies that all of
the true (unknown) effects are zero or near-zero. That is, no factor is important.

On the other hand, if the truth behind the experiment is that there is exactly one factor that
was important (that is, significantly non-zero), and all remaining factors are unimportant
(that is, near-zero), then the normal probability plot of all (n-1) effects is near-linear for the
(n-2) unimportant factors and the remaining single important factor would stand well off
the line.

Similarly, if the experiment were such that some subset of factors were important and all
remaining factors were unimportant, then the normal probability plot of all (n-1) effects
would be near-linear for all unimportant factors with the remaining important factors all
well off the line.

In real life, with the number of important factors unknown, this suggests that one could

5.5.9.8. Half-normal probability plot
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form a normal probability plot of the (n-1) estimated effects and draw a line through those
(unimportant) effects in the vicinity of zero. This identifies and extracts all remaining effects
off the line and declares them as important.

The above rationale and methodology works well in practice, with the net effect that the
normal probability plot of the effects is an important, commonly used and successfully
employed tool for identifying important factors in 2-level full and factorial experiments.
Following the lead of Cuthbert Daniel (1976), we augment the methodology and arrive at a
further improvement. Specifically, the sign of each estimate is completely arbitrary and will
reverse depending on how the initial assignments were made (e.g., we could assign "-" to
treatment A and "+" to treatment B or just as easily assign "+" to treatment A and "-" to
treatment B).

This arbitrariness is addressed by dealing with the effect magnitudes rather than the signed
effects. If the signed effects follow a normal distribution, the absolute values of the effects
follow a half-normal distribution.

In this new context, one tests for important versus unimportant factors by generating a
half-normal probability plot of the absolute value of the effects. As before, linearity implies
half-normality, which in turn implies all factors are unimportant. More typically, however,
the half-normal probability plot will be only partially linear. Unimportant (that is,
near-zero) effects manifest themselves as being near zero and on a line while important
(that is, large) effects manifest themselves by being off the line and well-displaced from zero.

Plot for
defective
springs
data

The half-normal probability plot of the effects for the defectice springs data set is as follows.

5.5.9.8. Half-normal probability plot
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How to
interpret

From the half-normal probability plot, we look for the following:

Identifying Important Factors:

Determining the subset of important factors is the most important task of the half-normal
probability plot of |effects|. As discussed above, the estimated |effect| of an unimportant
factor will typically be on or close to a near-zero line, while the estimated |effect| of an
important factor will typically be displaced well off the line.

The separation of factors into important/unimportant categories is thus done by answering
the question:

Which points on the half-normal probability plot of |effects| are large and well-off
the linear collection of points drawn in the vicinity of the origin?

This line of unimportant factors typically encompasses the majority of the points on the
plot. The procedure consists, therefore, of the following:

identifying this line of near-zero (unimportant) factors; then1.  

declaring the remaining off-line factors as important.2.  

Note that the half-normal probability plot of |effects| and the |effects| plot have the same
vertical axis; namely, the ordered |effects|, so the following discussion about right-margin
factor identifiers is relevant to both plots. As a consequence of the natural on-line/off-line
segregation of the |effects| in half-normal probability plots, factors off-line tend to have
far-right labels that are distinct and isolated while factors near the line tend to have
far-right labels that are overstruck and hard to read. The rough rule-of-thumb would then
be to declare as important those factors/interactions whose far-right labels are easy to
distinguish and to declare as unimportant those factors/interactions whose far-right labels
are overwritten and hard to distinguish.

1.  

Ranked List of Factors (including interactions):

This is a minor objective of the half-normal probability plot (it is better done via the
|effects| plot). To determine the ranked list of factors from a half-normal probability plot,
simply scan the vertical axis |effects|

Which |effect| is largest? Note the factor identifier associated with this largest |effect|
(this is the "most important factor").

1.  

Which |effect| is next in size? Note the factor identifier associated with this next
largest |effect| (this is the "second most important factor").

2.  

Continue for the remaining factors. In practice, the bottom end of the ranked list (the
unimportant factors) will be hard to extract because of overstriking, but the top end
of the ranked list (the important factors) will be easy to determine.

3.  

2.  

In summary, it should be noted that since the signs of the estimated effects are arbitrary, we
recommend the use of the half-normal probability plot of |effects| technique over the normal
probability plot of the |effects|. These probability plots are among the most commonly-employed
EDA procedure for identification of important factors in 2-level full and factorial designs. The
half-normal probability plot enjoys widespread usage across both "classical" and Taguchi camps.
It deservedly plays an important role in our recommended 10-step graphical procedure for the
analysis of 2-level designed experiments.

5.5.9.8. Half-normal probability plot
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Conclusions
for the
defective
springs
data

The application of the half-normal probability plot to the defective springs data set results in the
following conclusions:

Ranked list of factors (including interactions):

X1 (most important)1.  

X1*X3 (next most important)2.  

X23.  

other factors are of lesser importance4.  

1.  

Separation of factors into important/unimportant categories:

Important: X1, X1*X3, and X2
Unimportant: the remainder

2.  

5.5.9.8. Half-normal probability plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.9.Cumulative residual standard deviation plot

Purpose The cumulative residual sd (standard deviation) plot answers the question:

What is a good model for the data?

The prior 8 steps in this analysis sequence addressed the two important goals:

Factors: determining the most important factors that affect the response, and1.  

Settings: determining the best settings for these factors.2.  

In addition to the above, a third goal is of interest:

Model: determining a model (that is, a prediction equation) that functionally relates the
observed response Y with the various main effects and interactions.

3.  

Such a function makes particular sense when all of the individual factors are continuous and
ordinal (such as temperature, pressure, humidity, concentration, etc.) as opposed to any of the
factors being discrete and non-ordinal (such as plant, operator, catalyst, supplier).

In the continuous-factor case, the analyst could use such a function for the following purposes.

Reproduction/Smoothing: predict the response at the observed design points.1.  

Interpolation: predict what the response would be at (unobserved) regions between the
design points.

2.  

Extrapolation: predict what the response would be at (unobserved) regions beyond the
design points.

3.  

For the discrete-factor case, the methods developed below to arrive at such a function still apply,
and so the resulting model may be used for reproduction. However, the interpolation and
extrapolation aspects do not apply.

In modeling, we seek a function f in the k factors X1, X2, ..., Xk such that the predicted values

are "close" to the observed raw data values Y. To this end, two tasks exist:

Determine a good functional form f;1.  

Determine good estimates for the coefficients in that function f.2.  

For example, if we had two factors X1 and X2, our goal would be to

determine some function Y = f(X1,X2); and1.  

estimate the parameters in f2.  

such that the resulting model would yield predicted values  that are as close as possible to the
observed response values Y. If the form f has been wisely chosen, a good model will result and

that model will have the characteristic that the differences ("residuals" = Y - ) will be uniformly
near zero. On the other hand, a poor model (from a poor choice of the form f) will have the
characteristic that some or all of the residuals will be "large".

5.5.9.9. Cumulative residual standard deviation plot
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For a given model, a statistic that summarizes the quality of the fit via the typical size of the n
residuals is the residual standard deviation:

with p denoting the number of terms in the model (including the constant term) and r denoting the
ith residual. We are also assuming that the mean of the residuals is zero, which will be the case
for models with a constant term that are fit using least squares.

If we have a good-fitting model, sres will be small. If we have a poor-fitting model, sres will be
large.

For a given data set, each proposed model has its own quality of fit, and hence its own residual
standard deviation. Clearly, the residual standard deviation is more of a model-descriptor than a
data-descriptor. Whereas "nature" creates the data, the analyst creates the models. Theoretically,
for the same data set, it is possible for the analyst to propose an indefinitely large number of
models.

In practice, however, an analyst usually forwards only a small, finite number of plausible models
for consideration. Each model will have its own residual standard deviation. The cumulative
residual standard deviation plot is simply a graphical representation of this collection of residual
standard deviations for various models. The plot is beneficial in that

good models are distinguished from bad models;1.  

simple good models are distinguished from complicated good models.2.  

In summary, then, the cumulative residual standard deviation plot is a graphical tool to help
assess

which models are poor (least desirable); and1.  

which models are good but complex (more desirable); and2.  

which models are good and simple (most desirable).3.  

Output The outputs from the cumulative residual standard deviation plot are

Primary: A good-fitting prediction equation consisting of an additive constant plus the
most important main effects and interactions.

1.  

Secondary: The residual standard deviation for this good-fitting model.2.  

Definition A cumulative residual sd plot is formed by

Vertical Axis: Ordered (largest to smallest) residual standard deviations of a sequence of
progressively more complicated fitted models.

1.  

Horizontal Axis: Factor/interaction identification of the last term included into the linear
model:

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction
etc.

2.  

Far right margin: Factor/interaction identification (built-in redundancy):

1 indicates factor X1;

3.  

5.5.9.9. Cumulative residual standard deviation plot
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2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction
etc.

If the design is a fractional factorial, the confounding structure is provided for main effects
and 2-factor interactions.

The cumulative residual standard deviations plot is thus a Pareto-style, largest to smallest,
graphical summary of residual standard deviations for a selected series of progressively more
complicated linear models.

The plot shows, from left to right, a model with only a constant and the model then augmented by
including, one at a time, remaining factors and interactions. Each factor and interaction is
incorporated into the model in an additive (rather than in a multiplicative or logarithmic or power,
etc. fashion). At any stage, the ordering of the next term to be added to the model is such that it
will result in the maximal decrease in the resulting residual standard deviation.

Motivation This section addresses the following questions:

What is a model?1.  

How do we select a goodness-of-fit metric for a model?2.  

How do we construct a good model?3.  

How do we know when to stop adding terms?4.  

What is the final form for the model?5.  

Why is the 1/2 in the model?6.  

What are the advantages of the linear model?7.  

How do we use the model to generate predicted values?8.  

How do we use the model beyond the data domain?9.  

What is the best confirmation point for interpolation?10.  

How do we use the model for interpolation?11.  

How do we use the model for extrapolation?12.  

Plot for
defective
springs
data

Applying the cumulative residual standard deviation plot to the defective springs data set yields
the following plot.

5.5.9.9. Cumulative residual standard deviation plot
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How to
interpret As discussed in detail under question 4 in the Motivation section, the cumulative residual

standard deviation "curve" will characteristically decrease left to right as we add more terms to
the model. The incremental improvement (decrease) tends to be large at the beginning when
important factors are being added, but then the decrease tends to be marginal at the end as
unimportant factors are being added.

Including all terms would yield a perfect fit (residual standard deviation = 0) but would also result
in an unwieldy model. Including only the first term (the average) would yield a simple model
(only one term!) but typically will fit poorly. Although a formal quantitative stopping rule can be
developed based on statistical theory, a less-rigorous (but good) alternative stopping rule that is
graphical, easy to use, and highly effective in practice is as follows:

Keep adding terms to the model until the curve's "elbow" is encountered. The "elbow
point" is that value in which there is a consistent, noticeably shallower slope (decrease) in
the curve. Include all terms up to (and including) the elbow point (after all, each of these
included terms decreased the residual standard deviation by a large amount). Exclude any
terms after the elbow point since all such successive terms decreased the residual standard
deviation so slowly that the terms were "not worth the complication of keeping".

From the residual standard deviation plot for the defective springs data, we note the following:

The residual standard deviation (rsd) for the "baseline" model

is sres = 13.7.

1.  

5.5.9.9. Cumulative residual standard deviation plot
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As we add the next term, X1, the rsd drops nearly 7 units (from 13.7 to 6.6).2.  

If we add the term X1*X3, the rsd drops another 3 units (from 6.6 to 3.4).3.  

If we add the term X2, the rsd drops another 2 units (from 3.4 to 1.5).4.  

When the term X3 is added, the reduction in the rsd (from about 1.5 to 1.3) is negligible.5.  

Thereafter to the end, the total reduction in the rsd is from only 1.3 to 0.6.  

In step 5, note that when we have effects of equal magnitude (the X3 effect is equal to the X1*X2
interaction effect), we prefer including a main effect before an interaction effect and a
lower-order interaction effect before a higher-order interaction effect.

In this case, the "kink" in the residual standard deviation curve is at the X2 term. Prior to that, all
added terms (including X2) reduced the rsd by a large amount (7, then 3, then 2). After the
addition of X2, the reduction in the rsd was small (all less than 1): .2, then .8, then .5, then 0.

The final recommended model in this case thus involves p = 4 terms:

the average (= 71.25)1.  

factor X12.  

the X1*X33.  

factor X24.  

The fitted model thus takes on the form

The motivation for using the 0.5 term was given in an earlier section.

The least squares estimates for the coefficients in this model are

average = 71.25
B1 = 23
B13 = 10
B2 = -5

The B1 = 23, B13 = 10, and B2 = -5 least squares values are, of course, identical to the estimated

effects E1 = 23, E13 = 10, and E2 = -5 (= (+1) - (-1)) values as previously derived in step 7 of
this recommended 10-step DEX analysis procedure.

The final fitted model is thus

Applying this prediction equation to the 8 design points yields: predicted values  that are close

to the data Y, and residuals (Res = Y - ) that are close to zero:

X1 X2 X3 Y Res
- - - 67 67.25 -0.25
+ - - 79 80.25 -1.25
- + - 61 62.25 -1.25
+ + - 75 75.25 -0.25
- - + 59 57.25 +1.75
+ - + 90 90.25 -0.25
- + + 52 52.25 -0.25
+ + + 87 85.25 +1.75

Computing the residual standard deviation:

5.5.9.9. Cumulative residual standard deviation plot
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with n = number of data points = 8, and p = 4 = number of estimated coefficients (including the
average) yields

sres = 1.54 (= 1.5 if rounded to 1 decimal place)

This detailed res = 1.54 calculation brings us full circle for 1.54 is the value given above the X3
term on the cumulative residual standard deviation plot.

Conclusions
for the
defective
springs
data

The application of the Cumulative Residual Standard Deviation Plot to the defective springs data
set results in the following conclusions:

Good-fitting Parsimonious (constant + 3 terms) Model:1.  

Residual Standard Deviation for this Model (as a measure of the goodness-of-fit for the
model):

sres = 1.54

2.  

5.5.9.9. Cumulative residual standard deviation plot
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5.5.9.9.1.Motivation: What is a Model?

Mathematical
models:
functional
form and
coefficients

A model is a mathematical function that relates the response Y to the
factors X1 to Xk. A model has a

functional form; and1.  

coefficients.2.  

An excellent and easy-to-use functional form that we find particularly
useful is a linear combination of the main effects and the interactions
(the selected model is a subset of the full model and almost always a
proper subset). The coefficients in this linear model are easy to obtain
via application of the least squares estimation criterion (regression). A
given functional form with estimated coefficients is referred to as a
"fitted model" or a "prediction equation".

Predicted
values and
residuals

For given settings of the factors X1 to Xk, a fitted model will yield
predicted values. For each (and every) setting of the Xi's, a
"perfect-fit" model is one in which the predicted values are identical
to the observed responses Y at these Xi's. In other words, a perfect-fit
model would yield a vector of predicted values identical to the
observed vector of response values. For these same Xi's, a
"good-fitting" model is one that yields predicted values "acceptably
near", but not necessarily identical to, the observed responses Y.

The residuals (= deviations = error) of a model are the vector of

differences (Y - ) between the responses and the predicted values
from the model. For a perfect-fit model, the vector of residuals would
be all zeros. For a good-fitting model, the vector of residuals will be
acceptably (from an engineering point of view) close to zero.

5.5.9.9.1. Motivation: What is a Model?
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5.5.9.9.2.Motivation: How do we Construct
a Goodness-of-fit Metric for a
Model?

Motivation This question deals with the issue of how to construct a metric, a
statistic, that may be used to ascertain the quality of the fitted model.
The statistic should be such that for one range of values, the implication
is that the model is good, whereas for another range of values, the
implication is that the model gives a poor fit.

Sum of
absolute
residuals

Since a model's adequacy is inversely related to the size of its residuals,
one obvious statistic is the sum of the absolute residuals.

Clearly, for a fixed n,the smaller this sum is, the smaller are the
residuals, which implies the closer the predicted values are to the raw
data Y, and hence the better the fitted model. The primary disadvantage
of this statistic is that it may grow larger simply as the sample size n
grows larger.

Average
absolute
residual

A better metric that does not change (much) with increasing sample size
is the average absolute residual:

with n denoting the number of response values. Again, small values for
this statistic imply better-fitting models.
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Square root
of the
average
squared
residual

An alternative, but similar, metric that has better statistical properties is
the square root of the average squared residual.

As with the previous statistic, the smaller this statistic, the better the
model.

Residual
standard
deviation

Our final metric, which is used directly in inferential statistics, is the
residual standard deviation

with p denoting the number of fitted coefficients in the model. This
statistic is the standard deviation of the residuals from a given model.
The smaller is this residual standard deviation, the better fitting is the
model. We shall use the residual standard deviation as our metric of
choice for evaluating and comparing various proposed models.

5.5.9.9.2. Motivation: How do we Construct a Goodness-of-fit Metric for a Model?
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5.5.9.9.3.Motivation: How do we Construct
a Good Model?

Models for
2k and 2k-p

designs

Given that we have a statistic to measure the quality of a model, any
model, we move to the question of how to construct reasonable models
for fitting data from 2k and 2k-p designs.

Initial
simple
model

The simplest such proposed model is

that is, the response Y = a constant + random error. This trivial model
says that all of the factors (and interactions) are in fact worthless for
prediction and so the best-fit model is one that consists of a simple
horizontal straight line through the body of the data. The least squares

estimate for this constant c in the above model is the sample mean .
The prediction equation for this model is thus

The predicted values  for this fitted trivial model are thus given by a

vector consisting of the same value (namely ) throughout. The
residual vector for this model will thus simplify to simple deviations
from the mean:

Since the number of fitted coefficients in this model is 1 (namely the
constant c), the residual standard deviation is the following:

which is of course the familiar, commonly employed sample standard
deviation. If the residual standard deviation for this trivial model were
"small enough", then we could terminate the model-building process
right there with no further inclusion of terms. In practice, however, this
trivial model does not yield a residual standard deviation that is small

5.5.9.9.3. Motivation: How do we Construct a Good Model?
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enough (because the common value  will not be close enough to some
of the raw responses Y) and so the model must be augmented--but how?

Next-step
model

The logical next-step proposed model will consist of the above additive
constant plus some term that will improve the predicted values the most.
This will equivalently reduce the residuals the most and thus reduce the
residual standard deviation the most.

Using the
most
important
effects

As it turns out, it is a mathematical fact that the factor or interaction that
has the largest estimated effect

will necessarily, after being included in the model, yield the "biggest
bang for the buck" in terms of improving the predicted values toward
the response values Y. Hence at this point the model-building process
and the effect estimation process merge.

In the previous steps in our analysis, we developed a ranked list of
factors and interactions. We thus have a ready-made ordering of the
terms that could be added, one at a time, to the model. This ranked list
of effects is precisely what we need to cumulatively build more
complicated, but better fitting, models.

Step through
the ranked
list of
factors

Our procedure will thus be to step through, one by one, the ranked list of
effects, cumulatively augmenting our current model by the next term in
the list, and then compute (for all n design points) the predicted values,
residuals, and residual standard deviation. We continue this
one-term-at-a-time augmentation until the predicted values are
acceptably close to the observed responses Y (and hence the residuals
and residual standard deviation become acceptably close to zero).

Starting with the simple average, each cumulative model in this iteration
process will have its own associated residual standard deviation. In
practice, the iteration continues until the residual standard deviations
become sufficiently small.

5.5.9.9.3. Motivation: How do we Construct a Good Model?
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Cumulative
residual
standard
deviation
plot

The cumulative residual standard deviation plot is a graphical summary
of the above model-building process. On the horizontal axis is a series
of terms (starting with the average, and continuing on with various main
effects and interactions). After the average, the ordering of terms on the
horizontal axis is identical to the ordering of terms based on the
half-normal probability plot ranking based on effect magnitude.

On the vertical axis is the corresponding residual standard deviation that
results when the cumulative model has its coefficients fitted via least
squares, and then has its predicted values, residuals, and residual
standard deviations computed. The first residual standard deviation (on
the far left of the cumulative residual standard deviation plot) is that
which results from the model consisting of

the average.1.  

The second residual standard deviation plotted is from the model
consisting of

the average, plus1.  

the term with the largest |effect|.2.  

The third residual standard deviation plotted is from the model
consisting of

the average, plus1.  

the term with the largest |effect|, plus2.  

the term with the second largest |effect|.3.  

and so forth.
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5.5.9.9.4.Motivation: How do we Know
When to Stop Adding Terms?

Cumulative
residual
standard
deviation
plot typically
has a hockey
stick
appearance

Proceeding left to right, as we add more terms to the model, the
cumulative residual standard deviation "curve" will typically decrease.
At the beginning (on the left), as we add large-effect terms, the
decrease from one residual standard deviation to the next residual
standard deviation will be large. The incremental improvement
(decrease) then tends to drop off slightly. At some point the incremental
improvement will typically slacken off considerably. Appearance-wise,
it is thus very typical for such a curve to have a "hockey stick"
appearance:

starting with a series of large decrements between successive
residual standard deviations; then

1.  

hitting an elbow; then2.  

having a series of gradual decrements thereafter.3.  

Stopping rule The cumulative residual standard deviation plot provides a visual
answer to the question:

What is a good model?

by answering the related question:

When do we stop adding terms to the cumulative model?

Graphically, the most common stopping rule for adding terms is to
cease immediately upon encountering the "elbow". We include all
terms up to and including the elbow point since each of these terms
decreased the residual standard deviation by a large amount. However,
we exclude any terms afterward since these terms do not decrease the
residual standard deviation fast enough to warrant inclusion in the
model.

5.5.9.9.4. Motivation: How do we Know When to Stop Adding Terms?
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5.5.9.9.5. Motivation: What is the Form of the
Model?

Models for
various
values of k

From the above discussion, we thus note and recommend a form of the model that
consists of an additive constant plus a linear combination of main effects and
interactions. What then is the specific form for the linear combination?

The following are the full models for various values of k. The selected final model will
be a subset of the full model.

For the trivial k = 1 factor case:●   

For the k = 2 factor case:●   

For the k = 3 factor case:●   

and for the general k case:

Y = f(X1, X2, ..., Xk) =
c + (1/2)*(linear combination of all main effects and all interactions of all orders)
+ 

●   

Note that the above equations include a (1/2) term. Our reason for using this term is
discussed in some detail in the next section. Other sources typically do not use this
convention.
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Ordered
linear
combination

The listing above has the terms ordered with the main effects, then the 2-factor
interactions, then the 3-factor interactions, etc. In practice, it is recommended that the
terms be ordered by importance (whether they be main effects or interactions). Aside
from providing a functional representation of the response, models should help reinforce
what is driving the response, which such a re-ordering does. Thus for k = 2, if factor 2 is
most important, the 2-factor interaction is next in importance, and factor 1 is least
important, then it is recommended that the above ordering of

be rewritten as

5.5.9.9.5. Motivation: What is the Form of the Model?
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5.5.9.9.6. Motivation: Why is the 1/2 in the
Model?

Presence of
1/2 term does
not affect
predictive
quality of
model

The leading 1/2 is a multiplicative constant that we have chosen to
include in our expression of the linear model. Some authors and
software prefer to "simplify" the model by omitting this leading 1/2. It
is our preference to include the 1/2. This follows a hint given on page
334 of Box, Hunter, and Hunter (1978) where they note that the
coefficients that appear in the equations are half the estimated effects.

The presence or absence of the arbitrary 1/2 term does not affect the
predictive quality of the model after least squares fitting. Clearly, if we
choose to exclude the 1/2, then the least squares fitting process will
simply yield estimated values of the coefficients that are twice the size
of the coefficients that would result if we included the 1/2.

Included so
least squares
coefficient
estimate
equal to
estimated
effect

We recommend the inclusion of the 1/2 because of an additional
property that we would like to impose on the model; namely, we desire
that:

the value of the least squares estimated coefficient B for a given
factor (or interaction) be visually identical to the estimated effect
E for that factor (or interaction).

For a given factor, say X2, the estimated least squares coefficient B2
and the estimated effect E2 are not in general identical in either value
or concept.

5.5.9.9.6. Motivation: Why is the 1/2 in the Model?
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Effect For factor X2, the effect E2 is defined as the change in the mean
response as we proceed from the "-" setting of the factor to the "+"
setting of the factor. Symbolically:

Note that the estimated effect E2 value does not involve a model per
se, and is definitionally invariant to any other factors and interactions
that may affect the response. We examined and derived the factor
effects E in the previous steps of the general DEX analysis procedure.

On the other hand, the estimated coefficient B2 in a model is defined
as the value that results when we place the model into the least squares
fitting process (regression). The value that returns for B2 depends, in
general, on the form of the model, on what other terms are included in
the model, and on the experimental design that was run. The least
squares estimate for B2 is mildly complicated since it involves a
behind-the-scenes design matrix multiplication and inversion. The
coefficient values B that result are generally obscured by the
mathematics to make the coefficients have the collective property that
the fitted model as a whole yield a minimum sum of squared deviations
("least squares").

Orthogonality Rather remarkably, these two concepts and values:

factor and interaction effect estimates E, and1.  

least squares coefficient estimates B2.  

merge for the class of experimental designs for which this 10-step
procedure was developed, namely, 2-level full and fractional designs
that are orthogonal. Orthogonality has been promoted and chosen
because of its desirable design properties. That is, every factor is
balanced (every level of a factor occurs an equal number of times) and
every 2-factor cross-product is balanced. But to boot, orthogonality has
2 extraordinary properties on the data analysis side:

For the above linear models, the usual matrix solution for the
least squares estimates for the coefficients B reduce to a
computationally trivial and familiar form, namely,

1.  

The usual general modeling property that the least squares
estimate for a factor coefficient changes depending on what
other factors have been included in or excluded from the model
is now moot. With orthogonal designs, the coefficient estimates
are invariant in the sense that the estimate (e.g., B2) for a given
factor (e.g., X2) will not change as other factors and interactions
are included in or excluded from the model. That is, the estimate

2.  

5.5.9.9.6. Motivation: Why is the 1/2 in the Model?
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of the factor 2 effect (B2) remains the same regardless of what
other factors are included in the model.

The net effect of the above two properties is that a factor effect can be
computed once, and that value will hold for any linear model involving
that term regardless of how simple or complicated the model is,
provided that the design is orthogonal. This process greatly simplifies
the model-building process because the need to recalculate all of the
model coefficients for each new model is eliminated.

Why is 1/2
the
appropriate
multiplicative
term in these
orthogonal
models?

Given the computational simplicity of orthogonal designs, why then is
1/2 the appropriate multiplicative constant? Why not 1/3, 1/4, etc.? To
answer this, we revisit our specified desire that

when we view the final fitted model and look at the coefficient
associated with X2, say, we want the value of the coefficient B2
to reflect identically the expected total change Y in the
response Y as we proceed from the "-" setting of X2 to the "+"
setting of X2 (that is, we would like the estimated coefficient B2
to be identical to the estimated effect E2 for factor X2).

Thus in glancing at the final model with this form, the coefficients B of
the model will immediately reflect not only the relative importance of
the coefficients, but will also reflect (absolutely) the effect of the
associated term (main effect or interaction) on the response.

In general, the least squares estimate of a coefficient in a linear model
will yield a coefficient that is essentially a slope:

 = (change in response)/(change in factor levels)

associated with a given factor X. Thus in order to achieve the desired
interpretation of the coefficients B as being the raw change in the Y (

Y), we must account for and remove the change in X ( X).

What is the X? In our design descriptions, we have chosen the
notation of Box, Hunter and Hunter (1978) and set each (coded) factor
to levels of "-" and "+". This "-" and "+" is a shorthand notation for -1
and +1. The advantage of this notation is that 2-factor interactions (and
any higher-order interactions) also uniformly take on the closed values
of -1 and +1, since

   -1*-1 = +1
   -1*+1 = -1
   +1*-1 = -1
   +1*+1 = +1

and hence the set of values that the 2-factor interactions (and all
interactions) take on are in the closed set {-1,+1}. This -1 and +1
notation is superior in its consistency to the (1,2) notation of Taguchi

5.5.9.9.6. Motivation: Why is the 1/2 in the Model?
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in which the interaction, say X1*X2, would take on the values

   1*1 = 1
   1*2 = 2
   2*1 = 2
   2*2 = 4

which yields the set {1,2,4}. To circumvent this, we would need to
replace multiplication with modular multiplication (see page 440 of
Ryan (2000)). Hence, with the -1,+1 values for the main factors, we
also have -1,+1 values for all interactions which in turn yields (for all
terms) a consistent X of

X = (+1) - (-1) = +2

In summary then,

   B = ( )

     = ( Y) / 2
     = (1/2) * ( Y)

and so to achieve our goal of having the final coefficients reflect  Y
only, we simply gather up all of the 2's in the denominator and create a
leading multiplicative constant of 1 with denominator 2, that is, 1/2.

Example for k
= 1 case

For example, for the trivial k = 1 case, the obvious model

Y = intercept + slope*X1
Y = c + ( )*X1

becomes

Y = c + (1/ X) * ( Y)*X1

or simply

Y = c + (1/2) * ( Y)*X1
Y = c + (1/2)*(factor 1 effect)*X1
Y = c + (1/2)*(B*)*X1, with B* = 2B = E

This k = 1 factor result is easily seen to extend to the general k-factor
case.

5.5.9.9.6. Motivation: Why is the 1/2 in the Model?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5996.htm (4 of 4) [7/1/2003 4:16:42 PM]

http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.7.Motivation: What are the
Advantages of the
LinearCombinatoric Model?

Advantages:
perfect fit and
comparable
coefficients

The linear model consisting of main effects and all interactions has
two advantages:

Perfect Fit: If we choose to include in the model all of the
main effects and all interactions (of all orders), then the
resulting least squares fitted model will have the property that
the predicted values will be identical to the raw response
values Y. We will illustrate this in the next section.

1.  

Comparable Coefficients: Since the model fit has been carried
out in the coded factor (-1,+1) units rather than the units of the
original factor (temperature, time, pressure, catalyst
concentration, etc.), the factor coefficients immediately
become comparable to one another, which serves as an
immediate mechanism for the scale-free ranking of the
relative importance of the factors.

2.  

Example To illustrate in detail the above latter point, suppose the (-1,+1)
factor X1 is really a coding of temperature T with the original
temperature ranging from 300 to 350 degrees and the (-1,+1) factor
X2 is really a coding of time t with the original time ranging from 20
to 30 minutes. Given that, a linear model in the original temperature
T and time t would yield coefficients whose magnitude depends on
the magnitude of T (300 to 350) and t (20 to 30), and whose value
would change if we decided to change the units of T (e.g., from
Fahrenheit degrees to Celsius degrees) and t (e.g., from minutes to
seconds). All of this is avoided by carrying out the fit not in the
original units for T (300,350) and t (20,30), but in the coded units of
X1 (-1,+1) and X2 (-1,+1). The resulting coefficients are
unit-invariant, and thus the coefficient magnitudes reflect the true
contribution of the factors and interactions without regard to the unit
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of measurement.

Coding does not
lead to loss of
generality

Such coding leads to no loss of generality since the coded factor may
be expressed as a simple linear relation of the original factor (X1 to
T, X2 to t). The unit-invariant coded coefficients may be easily
transformed to unit-sensitive original coefficients if so desired.
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.8.Motivation: How do we use the Model to
Generate Predicted Values?

Design matrix
with response
for 2 factors

To illustrate the details as to how a model may be used for prediction, let us consider
a simple case and generalize from it. Consider the simple Yates-order 22 full factorial
design in X1 and X2, augmented with a response vector Y:

X1 X2 Y
- - 2
+ - 4
- + 6
+ + 8

Geometric
representation

This can be represented geometrically

5.5.9.9.8. Motivation: How do we use the Model to Generate Predicted Values?
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Determining
the prediction
equation

For this case, we might consider the model

From the above diagram, we may deduce that the estimated factor effects are:

c =
=

the average response = 
(2 + 4 + 6 + 8) / 4 = 5

B1 =
=

average change in Y as X>1 goes from -1 to +1
((4-2) + (8-6)) / 2 = (2 + 2) / 2 = 2

Note: the (4-2) is the change in Y (due to X1) on the lower axis; the
(8-6) is the change in Y (due to X1) on the upper axis.

B2 =
=

average change in Y as X2 goes from -1 to +1
((6-2) + (8-4)) / 2 = (4 + 4) / 2 = 4

B12 =

=

interaction = (the less obvious) average change in Y as X1*X2 goes from
-1 to +1
((2-4) + (8-6)) / 2 = (-2 + 2) / 2 = 0

and so the fitted model (that is, the prediction equation) is

or with the terms rearranged in descending order of importance

Table of fitted
values

Substituting the values for the four design points into this equation yields the
following fitted values

X1 X2 Y
- - 2 2
+ - 4 4
- + 6 6
+ + 8 8

Perfect fit This is a perfect-fit model. Such perfect-fit models will result anytime (in this
orthogonal 2-level design family) we include all main effects and all interactions.
Remarkably, this is true not only for k = 2 factors, but for general k.

Residuals For a given model (any model), the difference between the response value Y and the

predicted value  is referred to as the "residual":

residual = Y - 

The perfect-fit full-blown (all main factors and all interactions of all orders) models
will have all residuals identically zero.

The perfect fit is a mathematical property that comes if we choose to use the linear
model with all possible terms.

5.5.9.9.8. Motivation: How do we use the Model to Generate Predicted Values?
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Price for
perfect fit

What price is paid for this perfect fit? One price is that the variance of  is increased
unnecessarily. In addition, we have a non-parsimonious model. We must compute
and carry the average and the coefficients of all main effects and all interactions.
Including the average, there will in general be 2k coefficients to fully describe the
fitting of the n = 2k points. This is very much akin to the Y = f(X) polynomial fitting
of n distinct points. It is well known that this may be done "perfectly" by fitting a
polynomial of degree n-1. It is comforting to know that such perfection is
mathematically attainable, but in practice do we want to do this all the time or even
anytime? The answer is generally "no" for two reasons:

Noise: It is very common that the response data Y has noise (= error) in it. Do
we want to go out of our way to fit such noise? Or do we want our model to
filter out the noise and just fit the "signal"? For the latter, fewer coefficients
may be in order, in the same spirit that we may forego a perfect-fitting (but
jagged) 11-th degree polynomial to 12 data points, and opt out instead for an
imperfect (but smoother) 3rd degree polynomial fit to the 12 points.

1.  

Parsimony: For full factorial designs, to fit the n = 2k points we would need to
compute 2k coefficients. We gain information by noting the magnitude and
sign of such coefficients, but numerically we have n data values Y as input and
n coefficients B as output, and so no numerical reduction has been achieved.
We have simply used one set of n numbers (the data) to obtain another set of n
numbers (the coefficients). Not all of these coefficients will be equally
important. At times that importance becomes clouded by the sheer volume of
the n = 2k coefficients. Parsimony suggests that our result should be simpler
and more focused than our n starting points. Hence fewer retained coefficients
are called for.

2.  

The net result is that in practice we almost always give up the perfect, but unwieldy,
model for an imperfect, but parsimonious, model.

Imperfect fit The above calculations illustrated the computation of predicted values for the full
model. On the other hand, as discussed above, it will generally be convenient for
signal or parsimony purposes to deliberately omit some unimportant factors. When
the analyst chooses such a model, we note that the methodology for computing

predicted values  is precisely the same. In such a case, however, the resulting
predicted values will in general not be identical to the original response values Y; that
is, we no longer obtain a perfect fit. Thus, linear models that omit some terms will
have virtually all non-zero residuals.
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.9.Motivation: How do we Use the
Model Beyond the Data Domain?

Interpolation
and
extrapolation

The previous section illustrated how to compute predicted values at the
points included in the design. One of the virtues of modeling is that the
resulting prediction equation is not restricted to the design data points.
From the prediction equation, predicted values can be computed
elsewhere and anywhere:

within the domain of the data (interpolation);1.  

outside of the domain of the data (extrapolation).2.  

In the hands of an expert scientist/engineer/analyst, the ability to
predict elsewhere is extremely valuable. Based on the fitted model, we
have the ability to compute predicted values for the response at a large
number of internal and external points. Thus the analyst can go beyond
the handful of factor combinations at hand and can get a feel (typically
via subsequent contour plotting) as to what the nature of the entire
response surface is.

This added insight into the nature of the response is "free" and is an
incredibly important benefit of the entire model-building exercise.

Predict with
caution

Can we be fooled and misled by such a mathematical and
computational exercise? After all, is not the only thing that is "real" the
data, and everything else artificial? The answer is "yes", and so such
interpolation/extrapolation is a double-edged sword that must be
wielded with care. The best attitude, and especially for extrapolation, is
that the derived conclusions must be viewed with extra caution.

By construction, the recommended fitted models should be good at the
design points. If the full-blown model were used, the fit will be perfect.
If the full-blown model is reduced just a bit, then the fit will still
typically be quite good. By continuity, one would expect
perfection/goodness at the design points would lead to goodness in the
immediate vicinity of the design points. However, such local goodness
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does not guarantee that the derived model will be good at some
distance from the design points.

Do
confirmation
runs

Modeling and prediction allow us to go beyond the data to gain
additional insights, but they must be done with great caution.
Interpolation is generally safer than extrapolation, but mis-prediction,
error, and misinterpretation are liable to occur in either case.

The analyst should definitely perform the model-building process and
enjoy the ability to predict elsewhere, but the analyst must always be
prepared to validate the interpolated and extrapolated predictions by
collection of additional real, confirmatory data. The general empirical
model that we recommend knows "nothing" about the engineering,
physics, or chemistry surrounding your particular measurement
problem, and although the model is the best generic model available, it
must nonetheless be confirmed by additional data. Such additional data
can be obtained pre-experimentally or post-experimentally. If done
pre-experimentally, a recommended procedure for checking the validity
of the fitted model is to augment the usual 2k or 2k-p designs with
additional points at the center of the design. This is discussed in the
next section.

Applies only
for
continuous
factors

Of course, all such discussion of interpolation and extrapolation makes
sense only in the context of continuous ordinal factors such as
temperature, time, pressure, size, etc. Interpolation and extrapolation
make no sense for discrete non-ordinal factors such as supplier,
operators, design types, etc.
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5.5.9.9.10.Motivation: What is the Best
Confirmation Point for
Interpolation?

Augment via
center point

For the usual continuous factor case, the best (most efficient and highest
leverage) additional model-validation point that may be added to a 2k or
2k-p design is at the center point. This center point augmentation "costs"
the experimentalist only one additional run.

Example For example, for the k = 2 factor (Temperature (300 to 350), and time
(20 to 30)) experiment discussed in the previous sections, the usual
4-run 22 full factorial design may be replaced by the following 5-run 22

full factorial design with a center point.

X1 X2 Y
- - 2
+ - 4
- + 6
+ + 8
0 0  

Predicted
value for the
center point

Since "-" stands for -1 and "+" stands for +1, it is natural to code the
center point as (0,0). Using the recommended model

we can substitute 0 for X1 and X2 to generate the predicted value of 5
for the confirmatory run.
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Importance
of the
confirmatory
run

The importance of the confirmatory run cannot be overstated. If the
confirmatory run at the center point yields a data value of, say, Y = 5.1,
since the predicted value at the center is 5 and we know the model is
perfect at the corner points, that would give the analyst a greater
confidence that the quality of the fitted model may extend over the
entire interior (interpolation) domain. On the other hand, if the
confirmatory run yielded a center point data value quite different (e.g., Y
= 7.5) from the center point predicted value of 5, then that would
prompt the analyst to not trust the fitted model even for interpolation
purposes. Hence when our factors are continuous, a single confirmatory
run at the center point helps immensely in assessing the range of trust
for our model.

Replicated
center points

In practice, this center point value frequently has two, or even three or
more, replications. This not only provides a reference point for
assessing the interpolative power of the model at the center, but it also
allows us to compute model-free estimates of the natural error in the
data. This in turn allows us a more rigorous method for computing the
uncertainty for individual coefficients in the model and for rigorously
carrying out a lack-of-fit test for assessing general model adequacy.
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5.5.9.9.11.Motivation: How do we Use the
Model for Interpolation?

Design table
in original
data units

As for the mechanics of interpolation itself, consider a continuation of
the prior k = 2 factor experiment. Suppose temperature T ranges from
300 to 350 and time t ranges from 20 to 30, and the analyst can afford
n = 4 runs. A 22 full factorial design is run. Forming the coded
temperature as X1 and the coded time as X2, we have the usual:

Temperature Time X1 X2 Y
300 20 - - 2
350 20 + - 4
300 30 - + 6
350 30 + + 8

Graphical
representation

Graphically the design and data are as follows:
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Typical
interpolation
question

As before, from the data, the "perfect-fit" prediction equation is

We now pose the following typical interpolation question:

From the model, what is the predicted response at, say,
temperature = 310 and time = 26?

In short:

(T = 310, t = 26) = ?

To solve this problem, we first view the k = 2 design and data
graphically, and note (via an "X") as to where the desired (T = 310, t =
26) interpolation point is:

Predicting the
response for
the
interpolated
point

The important next step is to convert the raw (in units of the original
factors T and t) interpolation point into a coded (in units of X1 and X2)
interpolation point. From the graph or otherwise, we note that a linear
translation between T and X1, and between t and X2 yields

T = 300 => X1 = -1
T = 350 => X1 = +1

thus

X1 = 0 is at T = 325

        |-------------|-------------|
       -1     ?       0            +1
       300   310     325           350
 

which in turn implies that

T = 310 => X1 = -0.6

Similarly,

5.5.9.9.11. Motivation: How do we Use the Model for Interpolation?
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t = 20 => X2 = -1
t = 30 => X2 = +1

therefore,

X2 = 0 is at t = 25

        |-------------|-------------|
       -1             0   ?        +1
       20             25 26        30
 

thus

t = 26 => X2 = +0.2

Substituting X1 = -0.6 and X2 = +0.2 into the prediction equation

yields a predicted value of 4.8.

Graphical
representation
of response
value for
interpolated
data point

Thus
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5.5.9.9.12.Motivation: How do we Use the
Model for Extrapolation?

Graphical
representation
of
extrapolation

Extrapolation is performed similarly to interpolation. For example, the
predicted value at temperature T = 375 and time t = 28 is indicated by
the "X":

and is computed by substituting the values X1 = +2.0 (T=375) and X2
= +0.8 (t=28) into the prediction equation

yielding a predicted value of 8.6. Thus we have
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Pseudo-data The predicted value from the modeling effort may be viewed as
pseudo-data, data obtained without the experimental effort. Such
"free" data can add tremendously to the insight via the application of
graphical techniques (in particular, the contour plots and can add
significant insight and understanding as to the nature of the response
surface relating Y to the X's.

But, again, a final word of caution: the "pseudo data" that results from
the modeling process is exactly that, pseudo-data. It is not real data,
and so the model and the model's predicted values must be validated
by additional confirmatory (real) data points. A more balanced
approach is that:

Models may be trusted as "real" [that is, to generate predicted
values and contour curves], but must always be verified [that is,
by the addition of confirmatory data points].

The rule of thumb is thus to take advantage of the available and
recommended model-building mechanics for these 2-level designs, but
do treat the resulting derived model with an equal dose of both
optimism and caution.

Summary In summary, the motivation for model building is that it gives us
insight into the nature of the response surface along with the ability to
do interpolation and extrapolation; further, the motivation for the use
of the cumulative residual standard deviation plot is that it serves as an
easy-to-interpret tool for determining a good and parsimonious model.
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5.5.9.10.DEX contour plot

Purpose The dex contour plot answers the question:

Where else could we have run the experiment to optimize the response?

Prior steps in this analysis have suggested the best setting for each of the k factors. These best
settings may have been derived from

Data: which of the n design points yielded the best response, and what were the settings of
that design point, or from

1.  

Averages: what setting of each factor yielded the best response "on the average".2.  

This 10th (and last) step in the analysis sequence goes beyond the limitations of the n data points
already chosen in the design and replaces the data-limited question

"From among the n data points, what was the best setting?"

to a region-related question:

"In general, what should the settings have been to optimize the response?"

Output The outputs from the dex contour plot are

Primary: Best setting (X10, X20, ..., Xk0) for each of the k factors. This derived setting
should yield an optimal response.

1.  

Secondary: Insight into the nature of the response surface and the importance/unimportance
of interactions.

2.  

Definition A dex contour plot is formed by

Vertical Axis: The second most important factor in the experiment.●   

Horizontal Axis: The most important factor in the experiment.●   

More specifically, the dex contour plot is constructed and utilized via the following 7 steps:

Axes1.  

Contour Curves2.  

Optimal Response Value3.  

Best Corner4.  

Steepest Ascent/Descent5.  

Optimal Curve6.  

Optimal Setting7.  

with

Axes: Choose the two most important factors in the experiment as the two axes on the plot.1.  

Contour Curves: Based on the fitted model and the best data settings for all of the
remaining factors, draw contour curves involving the two dominant factors. This yields a

2.  
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graphical representation of the response surface. The details for constructing linear contour
curves are given in a later section.

Optimal Value: Identify the theoretical value of the response that constitutes "best." In
particular, what value would we like to have seen for the response?

3.  

Best "Corner": The contour plot will have four "corners" for the two most important factors
Xi and Xj: (Xi,Xj) = (-,-), (-,+), (+,-), and (+,+). From the data, identify which of these four

corners yields the highest average response .

4.  

Steepest Ascent/Descent: From this optimum corner point, and based on the nature of the
contour lines near that corner, step out in the direction of steepest ascent (if maximizing) or
steepest descent (if minimizing).

5.  

Optimal Curve: Identify the curve on the contour plot that corresponds to the ideal optimal
value.

6.  

Optimal Setting: Determine where the steepest ascent/descent line intersects the optimum
contour curve. This point represents our "best guess" as to where we could have run our
experiment so as to obtain the desired optimal response.

7.  

Motivation In addition to increasing insight, most experiments have a goal of optimizing the response. That
is, of determining a setting (X10, X20, ..., Xk0) for which the response is optimized.

The tool of choice to address this goal is the dex contour plot. For a pair of factors Xi and Xj, the
dex contour plot is a 2-dimensional representation of the 3-dimensional Y = f(Xi,Xj) response
surface. The position and spacing of the isocurves on the dex contour plot are an easily
interpreted reflection of the nature of the surface.

In terms of the construction of the dex contour plot, there are three aspects of note:

Pairs of Factors: A dex contour plot necessarily has two axes (only); hence only two out of
the k factors can be represented on this plot. All other factors must be set at a fixed value
(their optimum settings as determined by the ordered data plot, the dex mean plot, and the
interaction effects matrix plot).

1.  

Most Important Factor Pair: Many dex contour plots are possible. For an experiment with k

factors, there are  possible contour plots. For

example, for k = 4 factors there are 6 possible contour plots: X1 and X2, X1 and X3, X1 and
X4, X2 and X3, X2 and X4, and X3 and X4. In practice, we usually generate only one contour
plot involving the two most important factors.

2.  

Main Effects Only: The contour plot axes involve main effects only, not interactions. The
rationale for this is that the "deliverable" for this step is k settings, a best setting for each of
the k factors. These k factors are real and can be controlled, and so optimal settings can be
used in production. Interactions are of a different nature as there is no "knob on the
machine" by which an interaction may be set to -, or to +. Hence the candidates for the axes
on contour plots are main effects only--no interactions.

3.  

In summary, the motivation for the dex contour plot is that it is an easy-to-use graphic that
provides insight as to the nature of the response surface, and provides a specific answer to the
question "Where (else) should we have collected the data so to have optimized the response?".
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Plot for
defective
springs
data

Applying the dex contour plot for the defective springs data set yields the following plot.

How to
interpret

From the dex contour plot for the defective springs data, we note the following regarding the 7
framework issues:

Axes●   

Contour curves●   

Optimal response value●   

Optimal response curve●   

Best corner●   

Steepest Ascent/Descent●   

Optimal setting●   
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Conclusions
for the
defective
springs
data

The application of the dex contour plot to the defective springs data set results in the following
conclusions:

Optimal settings for the "next" run:

Coded : (X1,X2,X3) = (+1.5,+1.0,+1.3)
Uncoded: (OT,CC,QT) = (1637.5,0.7,127.5)

1.  

Nature of the response surface:

The X1*X3 interaction is important, hence the effect of factor X1 will change depending on
the setting of factor X3.

2.  

5.5.9.10. DEX contour plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.1.How to Interpret: Axes

What factors
go on the 2
axes?

For this first item, we choose the two most important factors in the
experiment as the plot axes.

These are determined from the ranked list of important factors as
discussed in the previous steps. In particular, the |effects| plot includes
a ranked factor table. For the defective springs data, that ranked list
consists of

Factor/Interaction Effect Estimate
X1 23
X1*X3 10
X2 -5
X3 1.5
X1*X2 1.5
X1*X2*X3 0.5
X2*X3 0

Possible
choices

In general, the two axes of the contour plot could consist of

X1 and X2,●   

X1 and X3, or●   

X2 and X3.●   

In this case, since X1 is the top item in the ranked list, with an
estimated effect of 23, X1 is the most important factor and so will
occupy the horizontal axis of the contour plot. The admissible list thus
reduces to

X1 and X2, or●   

X1 and X3.●   

To decide between these two pairs, we look to the second item in the
ranked list. This is the interaction term X1*X3, with an estimated effect
of 10. Since interactions are not allowed as contour plot axes, X1*X3
must be set aside. On the other hand, the components of this interaction

5.5.9.10.1. How to Interpret: Axes
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(X1 and X3) are not to be set aside. Since X1 has already been
identified as one axis in the contour plot, this suggests that the other
component (X3) be used as the second axis. We do so. Note that X3
itself does not need to be important (in fact, it is noted that X3 is
ranked fourth in the listed table with a value of 1.5).

In summary then, for this example the contour plot axes are:

Horizontal Axis: X1
Vertical Axis: X3

Four cases
for
recommended
choice of
axes

Other cases can be more complicated. In general, the recommended
rule for selecting the two plot axes is that they be drawn from the first
two items in the ranked list of factors. The following four cases cover
most situations in practice:

Case 1:

Item 1 is a main effect (e.g., X3)1.  

Item 2 is another main effect (e.g., X5)2.  

Recommended choice:

Horizontal axis: item 1 (e.g., X3);1.  

Vertical axis: item 2 (e.g., X5).2.  

●   

Case 2:

Item 1 is a main effect (e.g., X3)1.  

Item 2 is a (common-element) interaction (e.g., X3*X4)2.  

Recommended choice:

Horizontal axis: item 1 (e.g., X3);1.  

Vertical axis: the remaining component in item 2 (e.g.,
X4).

2.  

●   

Case 3:

Item 1 is a main effect (e.g., X3)1.  

Item 2 is a (non-common-element) interaction (e.g.,
X2*X4)

2.  

Recommended choice:

Horizontal axis: item 1 (e.g., X3);1.  

Vertical axis: either component in item 2 (e.g., X2, or X4),
but preferably the one with the largest individual effect
(thus scan the rest of the ranked factors and if the X2
|effect| > X4 |effect|, choose X2; otherwise choose X4).

2.  

●   

Case 4:

Item 1 is a (2-factor) interaction (e.g., X2*X4)1.  

●   

5.5.9.10.1. How to Interpret: Axes
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Item 2 is anything2.  

Recommended choice:

Horizontal axis: component 1 from the item 1 interaction
e.g., X2);

1.  

Horizontal axis: component 2 from the item 1 interaction
(e.g., X4).

2.  
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.2.How to Interpret: Contour Curves

Non-linear
appearance
of contour
curves
implies
strong
interaction

Based on the fitted model (cumulative residual standard deviation plot) and the
best data settings for all of the remaining factors, we draw contour curves
involving the two dominant factors. This yields a graphical representation of the
response surface.

Before delving into the details as to how the contour lines were generated, let us
first note as to what insight can be gained regarding the general nature of the
response surface. For the defective springs data, the dominant characteristic of the
contour plot is the non-linear (fan-shaped, in this case) appearance. Such
non-linearity implies a strong X1*X3 interaction effect. If the X1*X3 interaction
were small, the contour plot would consist of a series of near-parallel lines. Such is
decidedly not the case here.

Constructing
the contour
curves

As for the details of the construction of the contour plot, we draw on the
model-fitting results that were achieved in the cumulative residual standard
deviation plot. In that step, we derived the following good-fitting prediction
equation:

The contour plot has axes of X1 and X3. X2 is not included and so a fixed value of
X2 must be assigned. The response variable is the percentage of acceptable
springs, so we are attempting to maximize the response. From the ordered data
plot, the main effects plot, and the interaction effects matrix plot of the general
analysis sequence, we saw that the best setting for factor X2 was "-". The best
observed response data value (Y = 90) was achieved with the run (X1,X2,X3) =
(+,-,+), which has X2 = "-". Also, the average response for X2 = "-" was 73 while
the average response for X2 = "+" was 68. We thus set X2 = -1 in the prediction
equation to obtain

This equation involves only X1 and X3 and is immediately usable for the X1 and
X3 contour plot. The raw response values in the data ranged from 52 to 90. The

5.5.9.10.2. How to Interpret: Contour Curves
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response implies that the theoretical worst is Y = 0 and the theoretical best is Y =
100.

To generate the contour curve for, say, Y = 70, we solve

by rearranging the equation in X3 (the vertical axis) as a function of X1 (the
horizontal axis). By substituting various values of X1 into the rearranged equation,
the above equation generates the desired response curve for Y = 70. We do so
similarly for contour curves for any desired response value Y.

Values for
X1

For these X3 = g(X1) equations, what values should be used for X1? Since X1 is
coded in the range -1 to +1, we recommend expanding the horizontal axis to -2 to
+2 to allow extrapolation. In practice, for the dex contour plot generated
previously, we chose to generate X1 values from -2, at increments of .05, up to +2.
For most data sets, this gives a smooth enough curve for proper interpretation.

Values for Y What values should be used for Y? Since the total theoretical range for the
response Y (= percent acceptable springs) is 0% to 100%, we chose to generate
contour curves starting with 0, at increments of 5, and ending with 100. We thus
generated 21 contour curves. Many of these curves did not appear since they were
beyond the -2 to +2 plot range for the X1 and X3 factors.

Summary In summary, the contour plot curves are generated by making use of the
(rearranged) previously derived prediction equation. For the defective springs data,
the appearance of the contour plot implied a strong X1*X3 interaction.

5.5.9.10.2. How to Interpret: Contour Curves
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.3.How to Interpret: Optimal
Response Value

Need to
define
"best"

We need to identify the theoretical value of the response that would
constitute "best". What value would we like to have seen for the
response?

For example, if the response variable in a chemical experiment is
percent reacted, then the ideal theoretical optimum would be 100%. If
the response variable in a manufacturing experiment is amount of waste,
then the ideal theoretical optimum would be zero. If the response
variable in a flow experiment is the fuel flow rate in an engine, then the
ideal theoretical optimum (as dictated by engine specifications) may be
a specific value (e.g., 175 cc/sec). In any event, for the experiment at
hand, select a number that represents the ideal response value.

Optimal
value for
this example

For the defective springs data, the response (percentage of acceptable
springs) ranged from Y = 52 to 90. The theoretically worst value would
be 0 (= no springs are acceptable), and the theoretically best value
would be 100 (= 100% of the springs are acceptable). Since we are
trying to maximize the response, the selected optimal value is 100.

5.5.9.10.3. How to Interpret: Optimal Response Value
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.4.How to Interpret: Best Corner

Four
corners
representing
2 levels for
2 factors

The contour plot will have four "corners" (two factors times two settings
per factor) for the two most important factors Xi and Xj: (Xi,Xj) = (-,-),
(-,+), (+,-), or (+,+). Which of these four corners yields the highest

average response ? That is, what is the "best corner"?

Use the raw
data

This is done by using the raw data, extracting out the two "axes factors",
computing the average response at each of the four corners, then
choosing the corner with the best average.

For the defective springs data, the raw data were

X1 X2 X3 Y
- - - 67
+ - - 79
- + - 61
+ + - 75
- - + 59
+ - + 90
- + + 52
+ + + 87

The two plot axes are X1 and X3 and so the relevant raw data collapses
to

X1 X3 Y
- - 67
+ - 79
- - 61
+ - 75
- + 59
+ + 90
- + 52
+ + 87

5.5.9.10.4. How to Interpret: Best Corner
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Averages which yields averages

X1 X3 Y
- - (67 + 61)/2 = 64
+ - (79 + 75)/2 = 77
- + (59 + 52)/2 = 55.5
+ + (90 + 87)/2 = 88.5

These four average values for the corners are annotated on the plot. The
best (highest) of these values is 88.5. This comes from the (+,+) upper
right corner. We conclude that for the defective springs data the best
corner is (+,+).

5.5.9.10.4. How to Interpret: Best Corner
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.5.How to Interpret: Steepest
Ascent/Descent

Start at
optimum
corner point

From the optimum corner point, based on the nature of the contour
surface at that corner, step out in the direction of steepest ascent (if
maximizing) or steepest descent (if minimizing).

Defective
springs
example

Since our goal for the defective springs problem is to maximize the
response, we seek the path of steepest ascent. Our starting point is the
best corner (the upper right corner (+,+)), which has an average
response value of 88.5. The contour lines for this plot have
increments of 5 units. As we move from left to right across the
contour plot, the contour lines go from low to high response values.
In the plot, we have drawn the maximum contour level, 105, as a
thick line. For easier identification, we have also drawn the contour
level of 90 as thick line. This contour level of 90 is immediately to
the right of the best corner

Conclusions on
steepest ascent
for defective
springs
example

The nature of the contour curves in the vicinity of (+,+) suggests a
path of steepest ascent

in the "northeast" direction1.  

about 30 degrees above the horizontal.2.  

5.5.9.10.5. How to Interpret: Steepest Ascent/Descent
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.6.How to Interpret: Optimal Curve

Corresponds
to ideal
optimum value

The optimal curve is the curve on the contour plot that corresponds to
the ideal optimum value.

Defective
springs
example

For the defective springs data, we search for the Y = 100 contour
curve. As determined in the steepest ascent/descent section, the Y =
90 curve is immediately outside the (+,+) point. The next curve to the
right is the Y = 95 curve, and the next curve beyond that is the Y =
100 curve. This is the optimal response curve.

5.5.9.10.6. How to Interpret: Optimal Curve
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.7.How to Interpret: Optimal Setting

Optimal
setting

The "near-point" optimality setting is the intersection of the steepest-ascent line
with the optimal setting curve.

Theoretically, any (X1,X3) setting along the optimal curve would generate the
desired response of Y = 100. In practice, however, this is true only if our
estimated contour surface is identical to "nature's" response surface. In reality, the
plotted contour curves are truth estimates based on the available (and "noisy") n =
8 data values. We are confident of the contour curves in the vicinity of the data
points (the four corner points on the chart), but as we move away from the corner
points, our confidence in the contour curves decreases. Thus the point on the Y =
100 optimal response curve that is "most likely" to be valid is the one that is
closest to a corner point. Our objective then is to locate that "near-point".

Defective
springs
example

In terms of the defective springs contour plot, we draw a line from the best corner,
(+,+), outward and perpendicular to the Y = 90, Y = 95, and Y = 100 contour
curves. The Y = 100 intersection yields the "nearest point" on the optimal
response curve.

Having done so, it is of interest to note the coordinates of that optimal setting. In
this case, from the graph, that setting is (in coded units) approximately at

(X1 = 1.5, X3 = 1.3)

5.5.9.10.7. How to Interpret: Optimal Setting
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Table of
coded and
uncoded
factors

With the determination of this setting, we have thus, in theory, formally
completed our original task. In practice, however, more needs to be done. We
need to know "What is this optimal setting, not just in the coded units, but also in
the original (uncoded) units"? That is, what does (X1=1.5, X3=1.3) correspond to
in the units of the original data?

To deduce his, we need to refer back to the original (uncoded) factors in this
problem. They were:

Coded
Factor

Uncoded Factor

X1 OT: Oven Temperature
X2 CC: Carbon Concentration
X3 QT: Quench Temperature

Uncoded
and coded
factor
settings

These factors had settings-- what were the settings of the coded and uncoded
factors? From the original description of the problem, the uncoded factor settings
were:

Oven Temperature (1450 and 1600 degrees)1.  

Carbon Concentration (.5% and .7%)2.  

Quench Temperature (70 and 120 degrees)3.  

with the usual settings for the corresponding coded factors:

X1 (-1,+1)1.  

X2 (-1,+1)2.  

X3 (-1,+1)3.  

Diagram To determine the corresponding setting for (X1=1.5, X3=1.3), we thus refer to the
following diagram, which mimics a scatter plot of response averages--oven
temperature (OT) on the horizontal axis and quench temperature (QT) on the
vertical axis:

5.5.9.10.7. How to Interpret: Optimal Setting
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The "X" on the chart represents the "near point" setting on the optimal curve.

Optimal
setting for
X1 (oven
temperature)

To determine what "X" is in uncoded units, we note (from the graph) that a linear
transformation between OT and X1 as defined by

OT = 1450 => X1 = -1
OT = 1600 => X1 = +1

yields

X1 = 0 being at OT = (1450 + 1600) / 2 = 1525

thus

           |-------------|-------------|
X1:       -1             0            +1
OT:      1450          1525          1600

and so X1 = +2, say, would be at oven temperature OT = 1675:

           |-------------|-------------|-------------|
X1:       -1             0            +1            +2
OT:      1450          1525          1600          1675

and hence the optimal X1 setting of 1.5 must be at

OT = 1600 + 0.5*(1675-1600) = 1637.5

5.5.9.10.7. How to Interpret: Optimal Setting
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Optimal
setting for
X3 (quench
temperature)

Similarly, from the graph we note that a linear transformation between quench
temperature QT and coded factor X3 as specified by

QT = 70 => X3 = -1
QT = 120 => X3 = +1

yields

X3 = 0 being at QT = (70 + 120) / 2 = 95

as in

        |-------------|-------------|
X3:    -1             0            +1
QT:    70            95           120

and so X3 = +2, say, would be quench temperature = 145:

        |-------------|-------------|-------------|
X3:    -1             0            +1            +2
QT:    70            95           120           145

Hence, the optimal X3 setting of 1.3 must be at

QT = 120 + .3*(145-120)
QT = 127.5

Summary of
optimal
settings

In summary, the optimal setting is

coded : (X1 = +1.5, X3 = +1.3)
uncoded: (OT = 1637.5 degrees, QT = 127.5 degrees)

and finally, including the best setting of the fixed X2 factor (carbon concentration
CC) of X2 = -1 (CC = .5%), we thus have the final, complete recommended
optimal settings for all three factors:

coded : (X1 = +1.5, X2 = -1.0, X3 = +1.3)
uncoded: (OT = 1637.5, CC = .7%, QT = 127.5)

If we were to run another experiment, this is the point (based on the data) that we
would set oven temperature, carbon concentration, and quench temperature with
the hope/goal of achieving 100% acceptable springs.

5.5.9.10.7. How to Interpret: Optimal Setting
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Options for
next step

In practice, we could either

collect a single data point (if money and time are an issue) at this
recommended setting and see how close to 100% we achieve, or

1.  

collect two, or preferably three, (if money and time are less of an issue)
replicates at the center point (recommended setting).

2.  

if money and time are not an issue, run a 22 full factorial design with center
point. The design is centered on the optimal setting (X1 = +1,5, X3 = +1.3)
with one overlapping new corner point at (X1 = +1, X3 = +1) and with new
corner points at (X1,X3) = (+1,+1), (+2,+1), (+1,+1.6), (+2,+1.6). Of these
four new corner points, the point (+1,+1) has the advantage that it overlaps
with a corner point of the original design.

3.  

5.5.9.10.7. How to Interpret: Optimal Setting
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5. Process Improvement

5.6.Case Studies

Contents The purpose of this section is to illustrate the analysis of designed
experiments with data collected from experiments run at the National
Institute of Standards and Technology and SEMATECH. A secondary
goal is to give the reader an opportunity to run the analyses in real-time
using the Dataplot software package. 

Eddy current probe sensitivity study1.  

Sonoluminescent light intensity study2.  

5.6. Case Studies
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5. Process Improvement
5.6. Case Studies

5.6.1.Eddy Current Probe Sensitivity Case
Study

Analysis of
a 23 Full
Factorial
Design

This case study demonstrates the analysis of a 23 full factorial design.

The analysis for this case study is based on the EDA approach discussed
in an earlier section.

Contents The case study is divided into the following sections:

Background and data1.  

Initial plots/main effects2.  

Interaction effects3.  
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Work this example yourself12.  
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5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.1.Background and Data

Background The data for this case study is a subset of a study performed by
Capobianco, Splett, and Iyer. Capobianco was a member of the NIST
Electromagnetics Division and Splett and Iyer were members of the
NIST Statistical Engineering Division at the time of this study.

The goal of this project is to develop a nondestructive portable device for
detecting cracks and fractures in metals. A primary application would be
the detection of defects in airplane wings. The internal mechanism of the
detector would be for sensing crack-induced changes in the detector's
electromagnetic field, which would in turn result in changes in the
impedance level of the detector. This change of impedance is termed
"sensitivity" and it is a sub-goal of this experiment to maximize such
sensitivity as the detector is moved from an unflawed region to a flawed
region on the metal.

Statistical
Goals

The case study illustrates the analysis of a 23 full factorial experimental
design. The specific statistical goals of the experiment are:

Determine the important factors that affect sensitivity.1.  

Determine the settings that maximize sensitivity.2.  

Determine a predicition equation that functionally relates
sensitivity to various factors.

3.  

5.6.1.1. Background and Data

http://www.itl.nist.gov/div898/handbook/pri/section6/pri611.htm (1 of 2) [7/1/2003 4:16:54 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Data Used
in the
Analysis

There were three detector wiring component factors under consideration:

X1 = Number of wire turns1.  

X2 = Wire winding distance2.  

X3 = Wire guage3.  

Since the maximum number of runs that could be afforded timewise and
costwise in this experiment was n = 10, a 23 full factoral experiment
(involving n = 8 runs) was chosen. With an eye to the usual monotonicity
assumption for 2-level factorial designs, the selected settings for the
three factors were as follows:

X1 = Number of wire turns : -1 = 90, +1 = 1801.  

X2 = Wire winding distance: -1 = 0.38, +1 = 1.142.  

X3 = Wire guage : -1 = 40, +1 = 483.  

The experiment was run with the 8 settings executed in random order.
The following data resulted.

    Y          X1        X2        X3
  Probe      Number   Winding     Wire     Run
Impedance   of Turns  Distance    Guage  Sequence
-------------------------------------------------
  1.70         -1        -1        -1           2
  4.57         +1        -1        -1           8
  0.55         -1        +1        -1           3
  3.39         +1        +1        -1           6
  1.51         -1        -1        +1           7
  4.59         +1        -1        +1           1
  0.67         -1        +1        +1           4
  4.29         +1        +1        +1           5

Note that the independent variables are coded as +1 and -1. These
represent the low and high settings for the levels of each variable.
Factorial designs often have 2 levels for each factor (independent
variable) with the levels being coded as -1 and +1. This is a scaling of
the data that can simplify the analysis. If desired, these scaled values can
be converted back to the original units of the data for presentation.

5.6.1.1. Background and Data
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5.6.1.2. Initial Plots/Main Effects

Plot the
Data:
Ordered
Data Plot

The first step in the analysis is to generate an ordered data plot.

Conclusions
from the
Ordered
Data Plot

We can make the following conclusions based on the ordered data plot.

Important Factors: The 4 highest response values have X1 = + while the 4 lowest response
values have X1 = -. This implies factor 1 is the most important factor. When X1 = -, the -
values of X2 are higher than the + values of X2. Similarly, when X1 = +, the - values of X2
are higher than the + values of X2. This implies X2 is important, but less so than X1. There
is no clear pattern for X3.

1.  

Best Settings: In this experiment, we are using the device as a detector, and so high
sensitivities are desirable. Given this, our first pass at best settings yields (X1 = +1, X2 =
-1, X3 = either).

2.  

5.6.1.2. Initial Plots/Main Effects
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Plot the
Data: Dex
Scatter Plot

The next step in the analysis is to generate a dex scatter plot.

Conclusions
from the
DEX
Scatter Plot

We can make the following conclusions based on the dex scatter plot.

Important Factors: Factor 1 (Number of Turns) is clearly important. When X1 = -1, all 4
senstivities are low, and when X1 = +1, all 4 sensitivities are high. Factor 2 (Winding
Distance) is less important. The 4 sensitivities for X2 = -1 are slightly higher, as a group,
than the 4 sensitivities for X2 = +1. Factor 3 (Wire Gage) does not appear to be important
at all. The sensitivity is about the same (on the average) regardless of the settings for X3.

1.  

Best Settings: In this experiment, we are using the device as a detector, so high sensitivities
are desirable. Given this, our first pass at best settings yields (X1 = +1, X2 = -1, X3 =
either).

2.  

There does not appear to be any significant outliers.3.  

5.6.1.2. Initial Plots/Main Effects
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Check for
Main
Effects: Dex
Mean Plot

One of the primary questions is: what are the most important factors? The ordered data plot and
the dex scatter plot provide useful summary plots of the data. Both of these plots indicated that
factor X1 is clearly important, X2 is somewhat important, and X3 is probably not important.

The dex mean plot shows the main effects. This provides probably the easiest to interpert
indication of the important factors.

Conclusions
from the
DEX Mean
Plot

The dex mean plot (or main effects plot) reaffirms the ordering of the dex scatter plot, but
additional information is gleaned because the eyeball distance between the mean values gives an
approximation to the least squares estimate of the factor effects.

We can make the following conclusions from the dex mean plot.

Important Factors:
X1 (effect = large: about 3 ohms)
X2 (effect = moderate: about -1 ohm)
X3 (effect = small: about 1/4 ohm)

1.  

Best Settings: As before, choose the factor settings that (on the average) maximize the
sensitivity:

(X1,X2,X3) = (+,-,+)

2.  

5.6.1.2. Initial Plots/Main Effects
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Comparison
of Plots

All of these plots are used primarily to detect the most important factors. Because it plots a
summary statistic rather than the raw data, the dex mean plot shows the main effects most clearly.
However, it is still recommended to generate either the ordered data plot or the dex scatter plot
(or both). Since these plot the raw data, they can sometimes reveal features of the data that might
be masked by the dex mean plot.

5.6.1.2. Initial Plots/Main Effects
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5.6.1.3. Interaction Effects

Check for
Interaction
Effects: Dex
Interaction
Plot

In addition to the main effects, it is also important to check for interaction effects, especially
2-factor interaction effects. The dex interaction effects plot is an effective tool for this.

5.6.1.3. Interaction Effects
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Conclusions
from the
DEX
Interaction
Effects Plot

We can make the following conclusions from the dex interaction effects plot.

Important Factors: Looking for the plots that have the steepest lines (that is, largest
effects), we note that:

X1 (number of turns) is the most important effect: estimated effect = -3.1025;❍   

X2 (winding distance) is next most important: estimated effect = -.8675;❍   

X3 (wire gage) is relatively unimportant;❍   

All three 2-factor interactions are relatively unimporant.❍   

1.  

Best Settings: As with the main effects plot, the best settings to maximize the sensitivity
are

(X1,X2,X3) = (+1,-1,+1)

but with the X3 setting of +1 mattering little.

2.  

5.6.1.3. Interaction Effects
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5.6.1.4.Main and Interaction Effects: Block Plots

Block Plots Block plots are a useful adjunct to the dex mean plot and the dex interaction effects plot to
confirm the importance of factors, to establish the robustness of main effect conclusions, and to
determine the existence of interactions. Specifically,

The first plot below answers the question: Is factor 1 important? If factor 1 is important, is
this importance robust over all 4 settings of X2 and X3?

1.  

The second plot below answers the question: Is factor 2 important? If factor 2 is important,
is this importance robust over all 4 settings of X1 and X3?

2.  

The third plot below answers the question: Is factor 3 important? If factor 3 is important, is
this importance robust over all 4 settings of X1 and X2?

3.  

For block plots, it is the height of the bars that is important, not the relative positioning of each
bar. Hence we focus on the size and internals of the blocks, not "where" the blocks are one
relative to another.

5.6.1.4. Main and Interaction Effects: Block Plots
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Conclusions
from the
Block Plots

It is recalled that the block plot will access factor importance by the degree of consistency
(robustness) of the factor effect over a variety of conditions. In this light, we can make the
following conclusions from the block plots.

Relative Importance of Factors: All of the bar heights in plot 1 (turns) are greater than the
bar heights in plots 2 and 3. Hence, factor 1 is more important than factors 2 and 3.

1.  

Statistical Significance: In plot 1, looking at the levels within each bar, we note that the
response for level 2 is higher than level 1 in each of the 4 bars. By chance, this happens
with probability 1/(24) = 1/16 = 6.25%. Hence, factor 1 is near-statistically significant at
the 5% level. Similarly, for plot 2, level 1 is greater than level 2 for all 4 bars. Hence,
factor 2 is near-statistically significant. For factor 3, there is not consistent ordering within
all 4 bars and hence factor 3 is not statistically significant. Rigorously speaking then,
factors 1 and 2 are not statistically significant (since 6.25% is not < 5%); on the other hand
such near-significance is suggestive to the analyst that such factors may in fact be
important, and hence warrant further attention.

Note that the usual method for determining statistical significance is to perform an analysis
of variance (ANOVA). ANOVA is based on normality assumptions. If these normality
assumptions are in fact valid, then ANOVA methods are the most powerful method for
determining statistical signficance. The advantage of the block plot method is that it is
based on less rigorous assumptions than ANOVA. At an exploratory stage, it is useful to
know that our conclusions regarding important factors are valid under a wide range of
assumptions.

2.  

Interactions: For factor 1, the 4 bars do not change height in any systematic way and hence
there is no evidence of X1 interacting with either X2 or X3. Similarly, there is no evidence
of interactions for factor 2.

3.  

5.6.1.4. Main and Interaction Effects: Block Plots
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5.6.1.5.Estimate Main and Interaction Effects

Effects
Estimation

Although the effect estimates were given on the dex interaction plot on a previous
page, they can also be estimated quantitatively.

The full model for the 23 factorial design is

Data from factorial designs with two levels can be analyzed using the Yates technique,
which is described in Box, Hunter, and Hunter. The Yates technique utilizes the
special structure of these designs to simplify the computation and presentation of the
fit.

Dataplot
Output

Dataplot generated the following output for the Yates analysis.

  
(NOTE--DATA MUST BE IN STANDARD ORDER)
NUMBER OF OBSERVATIONS           =        8
NUMBER OF FACTORS                =        3
NO REPLICATION CASE
  
PSEUDO-REPLICATION STAND. DEV.   =    0.20152531564E+00
PSEUDO-DEGREES OF FREEDOM        =        1
(THE PSEUDO-REP. STAND. DEV. ASSUMES ALL
3, 4, 5, ...-TERM INTERACTIONS ARE NOT REAL,
BUT MANIFESTATIONS OF RANDOM ERROR)
  
STANDARD DEVIATION OF A COEF.    =    0.14249992371E+00
(BASED ON PSEUDO-REP. ST. DEV.)
  
GRAND MEAN                       =    0.26587500572E+01
GRAND STANDARD DEVIATION         =    0.17410624027E+01
  
99% CONFIDENCE LIMITS (+-)       =    0.90710897446E+01
95% CONFIDENCE LIMITS (+-)       =    0.18106349707E+01

5.6.1.5. Estimate Main and Interaction Effects
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99.5% POINT OF T DISTRIBUTION    =    0.63656803131E+02
97.5% POINT OF T DISTRIBUTION    =    0.12706216812E+02
  
IDENTIFIER    EFFECT        T VALUE      RESSD:     RESSD:
                                         MEAN +     MEAN +
                                         TERM    CUM TERMS
----------------------------------------------------------
   MEAN       2.65875                   1.74106    1.74106
      1       3.10250         21.8*     0.57272    0.57272
      2      -0.86750         -6.1      1.81264    0.30429
     23       0.29750          2.1      1.87270    0.26737
     13       0.24750          1.7      1.87513    0.23341
      3       0.21250          1.5      1.87656    0.19121
    123       0.14250          1.0      1.87876    0.18031
     12       0.12750          0.9      1.87912    0.00000

Description
of Yates
Output

In fitting 2-level factorial designs, Dataplot takes advantage of the special structure of
these designs in computing the fit and printing the results. Specifically, the main
effects and interaction effects are printed in sorted order from most significant to least
significant. It also prints the t-value for the term and the residual standard deviation
obtained by fitting the model with that term and the mean (the column labeled RESSD
MEAN + TERM), and for the model with that term, the mean, and all other terms that
are more statistically significant (the column labeled RESSD MEAN + CUM
TERMS).

Of the five columns of output, the most important are the first (which is the identifier),
the second (the least squares estimated effect = the difference of means), and the last
(the residuals standard deviation for the cumulative model, which will be discussed in
more detail in the next section).

Conclusions In summary, the Yates analysis provides us with the following ranked list of important
factors.

X1 (Number of Turns):1.  effect estimate = 3.1025 ohms
X2 (Winding Distance):2.  effect estimate = -0.8675 ohms
X2*X3 (Winding Distance with
Wire Guage):

3.  effect estimate = 0.2975 ohms

X1*X3 (Number of Turns with Wire
Guage):

4.  effect estimate = 0.2475 ohms

X3 (Wire Guage):5.  effect estimate = 0.2125 ohms
X1*X2*X3 (Number of Turns with
Winding Distance with Wire
Guage):

6.  effect estimate = 0.1425 ohms

X1*X2 (Number of Turns with
Winding Distance):

7.  effect estimate = 0.1275 ohms

5.6.1.5. Estimate Main and Interaction Effects
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5.6.1.6.Modeling and Prediction Equations

Parameter
Estimates
Don't
Change as
Additional
Terms
Added

In most cases of least squares fitting, the model coefficient estimates for previously
added terms change depending on what was successively added. For example, the
estimate for the X1 coefficient might change depending on whether or not an X2 term
was included in the model. This is not the case when the design is orthogonal, as is this
23 full factorial design. In such a case, the estimates for the previously included terms
do not change as additional terms are added. This means the ranked list of effect
estimates in the Yates table simultaneously serves as the least squares coefficient
estimates for progressively more complicated models.

The last column of the Yates table gave the residual standard deviation for 8 possible
models, each one progressively more complicated.

Default
Model:
Grand
Mean

At the top of the Yates table, if none of the factors are important, the prediction
equation defaults to the mean of all the response values (the overall or grand mean).
That is,

From the last column of the Yates table, it can be seen that this simplest of all models
has a residual standard deviation (a measure of goodness of fit) of 1.74106 ohms.
Finding a good-fitting model was not one of the stated goals of this experiment, but the
determination of a good-fitting model is "free" along with the rest of the analysis, and
so it is included.

Conclusions From the last column of the Yates table, we can summarize the following prediction
equations:

has a residual standard deviation of 1.74106 ohms.

●   

has a residual standard deviation of 0.57272 ohms.

●   

has a residual standard deviation of 0.30429 ohms.

●   

●   

5.6.1.6. Modeling and Prediction Equations
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has a residual standard deviation of 0.29750 ohms.

The remaining models can be listed in a similar fashion. Note that the full model
provides a perfect fit to the data.

●   

5.6.1.6. Modeling and Prediction Equations
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5.6.1.7. Intermediate Conclusions

Important
Factors

Taking stock from all of the graphical and quantitative analyses of the
previous sections, we conclude that X1 (= number of turns) is the most
important engineering factor affecting sensitivity, followed by X2 (=
wire distance) as next in importance, followed then by some less
important interactions and X3 (= wire guage).

Best Settings Also, from the various analyses, we conclude that the best design
settings (on the average) for a high-sensitivity detector are

(X1,X2,X3) = (+,-,+)

that is

number of turns = 180,
winding distance = 0.38, and
wire guage = 48.

Can We
Extract
More From
the Data?

Thus, in a very real sense, the analysis is complete. We have achieved
the two most important stated goals of the experiment:

gaining insight into the most important factors, and1.  

ascertaining the optimal production settings.2.  

On the other hand, more information can be squeezed from the data, and
that is what this section and the remaining sections address.

First of all, we focus on the problem of taking the ranked list of
factors and objectively ascertaining which factors are "important"
versus "unimportant".

1.  

In a parallel fashion, we use the subset of important factors
derived above to form a "final" prediction equation that is good
(that is, having a sufficiently small residual standard deviation)
while being parsimonious (having a small number of terms),
compared to the full model, which is perfect (having a residual
standard deviation = 0, that is, the predicted values = the raw
data), but is unduly complicated (consisting of a constant + 7
terms).

2.  

5.6.1.7. Intermediate Conclusions
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5.6.1.8. Important Factors and Parsimonious Prediction

Identify
Important
Factors

The two problems discussed in the previous section (important factors and a parsimonious model)
will be handled in parallel since determination of one yields the other. In regard to the "important
factors", our immediate goal is to take the full subset of 7 main effects and interactions and
extract a subset that we will declare as "important", with the complementary subset being
"unimportant". Seven criteria are discussed in detail under the Yates analysis in the EDA Chapter
(Chapter 1). The relevant criteria will be applied here. These criteria are not all equally important,
nor will they yield identical subsets, in which case a consensus subset or a weighted consensus
subset must be extracted.

Criteria for
Including
Terms in
the Model

The criteria that we can use in determining whether to keep a factor in the model can be
summarized as follows.

Effects: Engineering Significance1.  

Effects: 90% Numerical Significance2.  

Effects: Statistical Significance3.  

Effects: Half-normal Probability Plots4.  

Averages: Youden Plot5.  

The first four criteria focus on effect estimates with three numerical criteria and one graphical
criterion. The fifth criterion focuses on averages. We discuss each of these criteria in detail in the
following sections.

The last section summarizes the conclusions based on all of the criteria.

Effects:
Engineering
Significance

The minimum engineering significant difference is defined as

where  is the absolute value of the parameter estimate (i.e., the effect) and  is the minimum
engineering significant difference. That is, declare a factor as "important" if the effect is greater
than some a priori declared engineering difference. We use a rough rule-of-thumb of keeping
only those factors whose effect is greater than 10% of the current production average. In this case,
let's say that the average detector has a sensitivity of 2.5 ohms. This suggests that we would
declare all factors whose effect is greater than 10% of 2.5 ohms = 0.25 ohm to be significant from
an engineering point of view.

Based on this minimum engineering-significant-difference criterion, we conclude to keep two
terms: X1 (3.10250) and X2 (-.86750).

5.6.1.8. Important Factors and Parsimonious Prediction
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Effects:
90%
Numerical
Significance

The 90% numerical significance criterion is defined as

That is, declare a factor as important if it exceeds 10% of the largest effect. For the current case
study, the largest effect is from factor 1 (3.10250 ohms), and so 10% of that is 0.31 ohms. This
suggests keeping all factors whose effects exceed 0.31 ohms.

Based on the 90% numerical criterion, we thus conclude to keep two terms: X1 (3.10250) and X2
(-.86750). The X2*X3 term, (0.29750), is just under the cutoff.

Effects:
Statistical
Significance

Statistical significance is defined as

That is, declare a factor as "important" if its effect is more than 2 standard deviations away from 0
(0, by definition, meaning "no effect"). The difficulty with this is that in order to invoke this we
need the  = the standard deviation of an observation.

For the current case study, ignoring 3-factor interactions and higher-order interactions leads to an
estimate of  based on omitting only a single term: the X1*X2*X3 interaction.

Thus for this current case study, if one assumes that the 3-factor interaction is nil and hence
represents a single drawing from a population centered at zero, an estimate of the standard
deviation of an effect is simply the estimate of the interaction effect (0.1425). Two such effect
standard deviations is 0.2850. This rule becomes to keep all  > 0.2850. This results in keeping
three terms: X1 (3.10250), X2 (-.86750), and X1*X2 (.29750).

Effects:
Probability
Plots

The half-normal probability plot can be used to identify important factors.

The following plot shows the half-normal probability plot of the absolute value of the effects.
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The half-normal probablity plot clearly shows two factors displaced off the line, and we see that
those two factors are factor 1 and factor 2. In conclusion, keep two factors: X1 (3.10250) and X2
(-.86750).

Effects:
Youden Plot

A dex Youden plot can be used in the following way. Keep a factor as "important" if it is
displaced away from the central-tendency bunch in a Youden plot of high and low averages.

5.6.1.8. Important Factors and Parsimonious Prediction
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For the case study at hand, the Youden plot clearly shows a cluster of points near the grand
average (2.65875) with two displaced points above (factor 1) and below (factor 2). Based on the
Youden plot, we thus conclude to keep two factors: X1 (3.10250) and X2 (-.86750).

Conclusions In summary, the criterion for specifying "important" factors yielded the following:

Effects, Engineering Significant:1.  X1 X2
Effects, Numerically Significant:2.  X1 X2 (X2*X3 is borderline)
Effects, Statistically Significant:3.  X1 X2 X2*X3
Effects, Half-Normal Probability Plot:4.  X1 X2
Averages, Youden Plot:5.  X1 X2

All the criteria select X1 and X2. One also includes the X2*X3 interaction term (and it is
borderline for another criteria).

We thus declare the following consensus:

Important Factors: X1 and X21.  

Parsimonious Prediction Equation:

(with a residual standard deviation of .30429 ohms)

2.  

5.6.1.8. Important Factors and Parsimonious Prediction
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.9.Validate the Fitted Model

Model
Validation

In the Important Factors and Parsimonious Prediction section, we came to the following model

The residual standard deviation for this model is 0.30429.

The next step is to validate the model. The primary method of model validation is graphical
residual analysis; that is, through an assortment of plots of the differences between the observed

data Y and the predicted value  from the model. For example, the design point (-1,-1,-1) has an
observed data point (from the Background and data section) of Y = 1.70, while the predicted
value from the above fitted model for this design point is

which leads to the residual 0.15875.

Table of
Residuals

If the model fits well,  should be near Y for all 8 design points. Hence the 8 residuals should all
be near zero. The 8 predicted values and residuals for the model with these data are:

   X1   X2   X3  Observed Predicted  Residual
----------------------------------------------
   -1   -1   -1    1.70    1.54125    0.15875
   +1   -1   -1    4.57    4.64375   -0.07375
   -1   +1   -1    0.55    0.67375   -0.12375
   +1   +1   -1    3.39    3.77625   -0.38625
   -1   -1   +1    1.51    1.54125   -0.03125
   +1   -1   +1    4.59    4.64375   -0.05375
   -1   +1   +1    0.67    0.67375   -0.00375
   +1   +1   +1    4.29    3.77625    0.51375

Residual
Standard
Deviation

What is the magnitude of the typical residual? There are several ways to compute this, but the
statistically optimal measure is the residual standard deviation:

with ri denoting the ith residual, N = 8 is the number of observations, and P = 3 is the number of
fitted parameters. From the Yates table, the residual standard deviation is 0.30429.

5.6.1.9. Validate the Fitted Model
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How Should
Residuals
Behave?

If the prediction equation is adequate, the residuals from that equation should behave like random
drawings (typically from an approximately normal distribution), and should, since presumably
random, have no structural relationship with any factor. This includes any and all potential terms
(X1, X2, X3, X1*X2, X1*X3, X2*X3, X1*X2*X3).

Further, if the model is adequate and complete, the residuals should have no structural
relationship with any other variables that may have been recorded. In particular, this includes the
run sequence (time), which is really serving as a surrogate for any physical or environmental
variable correlated with time. Ideally, all such residual scatter plots should appear structureless.
Any scatter plot that exhibits structure suggests that the factor should have been formally
included as part of the prediction equation.

Validating the prediction equation thus means that we do a final check as to whether any other
variables may have been inadvertently left out of the prediction equation, including variables
drifting with time.

The graphical residual analysis thus consists of scatter plots of the residuals versus all 3 factors
and 4 interactions (all such plots should be structureless), a scatter plot of the residuals versus run
sequence (which also should be structureless), and a normal probability plot of the residuals
(which should be near linear). We present such plots below.

Residual
Plots

The first plot is a normal probability plot of the residuals. The second plot is a run sequence plot
of the residuals. The remaining plots are plots of the residuals against each of the factors and each
of the interaction terms.

5.6.1.9. Validate the Fitted Model
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Conclusions We make the following conclusions based on the above plots.

Main Effects and Interactions: The X1 and X2 scatter plots are "flat" (as they must be since
X1 and X2 were explicitly included in the model). The X3 plot shows some structure as
does the X1*X3, the X2*X3, and the X1*X2*X3 plots. The X1*X2 plot shows little
structure. The net effect is that the relative ordering of these scatter plots is very much in
agreement (again, as it must be) with the relative ordering of the "unimportant" factors
given on lines 3-7 of the Yates table. From the Yates table and the X2*X3 plot, it is seen
that the next most influential term to be added to the model would be X2*X3. In effect,
these plots offer a higher-resolution confirmation of the ordering that was in the Yates
table. On the other hand, none of these other factors "passed" the criteria given in the
previous section, and so these factors, suggestively influential as they might be, are still not
influential enough to be added to the model.

1.  

Time Drift: The run sequence scatter plot is random. Hence there does not appear to be a
drift either from time, or from any factor (e.g., temperature, humidity, pressure, etc.)
possibly correlated with time.

2.  

Normality: The normal probability plot of the 8 residuals has some curvature, which
suggests that additional terms might be added. On the other hand, the correlation
coefficient of the 8 ordered residuals and the 8 theoretical normal N(0,1) order statistic
medians (which define the two axes of the plot) has the value 0.934, which is well within
acceptable (5%) limits of the normal probability plot correlation coefficient test for
normality. Thus, the plot is not so non-linear as to reject normality.

3.  

In summary, therefore, we accept the model

as a parsimonious, but good, representation of the sensitivity phenomenon under study.
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.10.Using the Fitted Model

Model
Provides
Additional
Insight

Although deriving the fitted model was not the primary purpose of the study, it does have two
benefits in terms of additional insight:

Global prediction1.  

Global determination of best settings2.  

Global
Prediction

How does one predict the response at points other than those used in the experiment? The
prediction equation yields good results at the 8 combinations of coded -1 and +1 values for the
three factors:

X1 = Number of turns = 90 and 1801.  

X2 = Winding distance = .38 and 1.142.  

X3 = Wire gauge = 40 and 483.  

What, however, would one expect the detector to yield at target settings of, say,

Number of turns = 1501.  

Winding distance = .502.  

Wire guage = 463.  

Based on the fitted equation, we first translate the target values into coded target values as
follows:

coded target = -1 + 2*(target-low)/(high-low)

Hence the coded target values are

X1 = -1 + 2*(150-90)/(180-90) = 0.3333331.  

X2 = -1 + 2*(.50-.38)/(1.14-.38) = -0.6842112.  

X3 = -1 + 2*(46-40)/(48-40) = 0.50003.  

Thus the raw data

(Number of turns,Winding distance,Wire guage) = (150,0.50,46)

translates into the coded

(X1,X2,X3) = (0.333333,-0.684211,0.50000)

on the -1 to +1 scale.

Inserting these coded values into the fitted equation yields, as desired, a predicted value of

 = 2.65875 + 0.5(3.10250*(.333333) - 0.86750*(-.684211)) = 3.47261

The above procedure can be carried out for any values of turns, distance, and gauge. This is
subject to the usual cautions that equations that are good near the data point vertices may not
necessarily be good everywhere in the factor space. Interpolation is a bit safer than extrapolation,
but it is not guaranteed to provide good results, of course. One would feel more comfortable
about interpolation (as in our example) if additional data had been collected at the center point
and the center point data turned out to be in good agreement with predicted values at the center
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point based on the fitted model. In our case, we had no such data and so the sobering truth is that
the user of the equation is assuming something in which the data set as given is not capable of
suggesting one way or the other. Given that assumption, we have demonstrated how one may
cautiously but insightfully generate predicted values that go well beyond our limited original data
set of 8 points.

Global
Determination
of Best
Settings

In order to determine the best settings for the factors, we can use a dex contour plot. The dex
contour plot is generated for the two most significant factors and shows the value of the response
variable at the vertices (i.e, the -1 and +1 settings for the factor variables) and indicates the
direction that maximizes (or minimizes) the response variable. If you have more than two
significant factors, you can generate a series of dex contour plots with each one using two of the
important factors.

DEX Contour
Plot

The following is the dex contour plot of the number of turns and the winding distance.

The maximum value of the response variable (eddy current) corresponds to X1 (number of turns)
equal to -1 and X2 (winding distance) equal to +1. The thickened line in the contour plot
corresponds to the direction that maximizes the response variable. This information can be used
in planning the next phase of the experiment.

5.6.1.10. Using the Fitted Model
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.11.Conclusions and Next Step

Conclusions The goals of this case study were:

Determine the most important factors.1.  

Determine the best settings for the factors.2.  

Determine a good prediction equation for the data.3.  

The various plots and Yates analysis showed that the number of turns
(X1) and the winding distance (X2) were the most important factors and
a good prediction equation for the data is:

The dex contour plot gave us the best settings for the factors (X1 = -1
and X2 = 1).

Next Step Full and fractional designs are typically used to identify the most
important factors. In some applications, this is sufficient and no further
experimentation is performed. In other applications, it is desired to
maximize (or minimize) the response variable. This typically involves
the use of response surface designs. The dex contour plot can provide
guidance on the settings to use for the factor variables in this next phase
of the experiment.

This is a common sequence for designed experiments in engineering and
scientific applications. Note the iterative nature of this approach. That is,
you typically do not design one large experiment to answer all your
questions. Rather, you run a series of smaller experiments. The initial
experiment or experiments are used to identify the important factors.
Once these factors are identified, follow-up experiments can be run to
fine tune the optimal settings (in terms of maximizing/minimizing the
response variable) for these most important factors.

For this particular case study, a response surface design was not used.

5.6.1.11. Conclusions and Next Step
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.12.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot. It is required that you
have already downloaded and installed Dataplot and configured your
browser to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the Data Sheet window. Across the top of the main
windows are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.  1. You have read 4 columns of numbers 
    into Dataplot: variables Y, X1, X2,
    and X3.

2. Plot the main effects.

   1. Ordered data plot.

   2. Dex scatter plot.

   3. Dex mean plot.

 1. Ordered data plot shows factor 1
    clearly important, factor 2 
    somewhat important.

 2. Dex scatter plot shows significant
    differences for factors 1 and 2.

 3. Dex mean plot shows significant
    differences in means for factors
    1 and 2.

5.6.1.12. Work This Example Yourself
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3. Plots for interaction effects

   1. Generate a dex interaction
      effects matrix plot.

 1. The dex interaction effects matrix
    plot does not show any major
    interaction effects.

4. Block plots for main and interaction effects

   1. Generate block plots.  1. The block plots show that the
    factor 1 and factor 2 effects
    are consistent over all
    combinations of the other
    factors.

5. Estimate main and interaction effects

   1. Perform a Yates fit to estimate the
      main effects and interaction effects.

 1. The Yates analysis shows that the
    factor 1 and factor 2 main effects
    are significant, and the interaction
    for factors 2 and 3 is at the
    boundary of statistical significance.

6. Model selection

   1. Generate half-normal
      probability plots of the effects.

   2. Generate a Youden plot of the
      effects.

 1. The probability plot indicates
    that the model should include
    main effects for factors 1 and 2.

 2. The Youden plot indicates
    that the model should include
    main effects for factors 1 and 2.

7. Model validation

   1. Compute residuals and predicted values
      from the partial model suggested by
      the Yates analysis.

   2. Generate residual plots to validate
      the model.

 1. Check the link for the
    values of the residual and
    predicted values.

 2. The residual plots do not
    indicate any major problems
    with the model using main
    effects for factors 1 and 2.
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8. Dex contour plot

   1. Generate a dex contour plot using
      factors 1 and 2.

 1. The dex contour plot shows
    X1 = -1 and X2 = +1 to be the
    best settings.
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5. Process Improvement
5.6. Case Studies

5.6.2.Sonoluminescent Light Intensity
Case Study

Analysis of a
27-3

Fractional
Factorial
Design

This case study demonstrates the analysis of a 27-3 fractional factorial
design.

This case study is a Dataplot analysis of the optimization of
sonoluminescent light intensity.

The case study is based on the EDA approach to experimental design
discussed in an earlier section.

Contents The case study is divided into the following sections:

Background and data1.  

Initial plots/main effects2.  

Interaction effects3.  

Main and interaction effects: block plots4.  

Important Factors: Youden plot5.  

Important Factors: |effects| plot6.  

Important Factors: half-normal probability plot7.  

Cumulative Residual SD plot8.  

Next step: dex contour plot9.  

Summary of conclusions10.  

Work this example yourself11.  

5.6.2. Sonoluminescent Light Intensity Case Study
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5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.1.Background and Data

Background
and
Motivation

Sonoluminescence is the process of turning sound energy into light. An
ultrasonic horn is used to resonate a bubble of air in a medium, usually
water. The bubble is ultrasonically compressed and then collapses to
light-emitting plasma.

In the general physics community, sonoluminescence studies are being
carried out to characterize it, to understand it, and to uncover its
practical uses. An unanswered question in the community is whether
sonoluminescence may be used for cold fusion.

NIST's motive for sonoluminescent investigations is to assess its
suitability for the dissolution of physical samples, which is needed in
the production of homogeneous Standard Reference Materials (SRMs).
It is believed that maximal dissolution coincides with maximal energy
and maximal light intensity. The ultimate motivation for striving for
maximal dissolution is that this allows improved determination of
alpha-and beta-emitting radionuclides in such samples.

The objectives of the NIST experiment were to determine the important
factors that affect sonoluminescent light intensity and to ascertain
optimal settings of such factors that will predictably achieve high
intensities. An original list of 49 factors was reduced, based on physics
reasons, to the following seven factors: molarity (amount of solute),
solute type, pH, gas type in the water, water depth, horn depth, and flask
clamping.

Time restrictions caused the experiment to be about one month, which
in turn translated into an upper limit of roughly 20 runs. A 7-factor,
2-level fractional factorial design (Resolution IV) was constructed and
run. The factor level settings are given below.

Eva Wilcox and Ken Inn of the NIST Physics Laboratory conducted this
experiment during 1999. Jim Filliben of the NIST Statistical
Engineering Division performed the analysis of the experimental data.

5.6.2.1. Background and Data
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Response
Variable,
Factor
Variables,
and Factor-
Level
Settings

This experiment utilizes the following response and factor variables.

Response Variable (Y) = The sonoluminescent light intensity.1.  

Factor 1 (X1) = Molarity (amount of Solute). The coding is -1 for
0.10 mol and +1 for 0.33 mol.

2.  

Factor 2 (X2) = Solute type. The coding is -1 for sugar and +1 for
glycerol.

3.  

Factor 3 (X3) = pH. The coding is -1 for 3 and +1 for 11.4.  

Factor 4 (X4) = Gas type in water. The coding is -1 for helium
and +1 for air.

5.  

Factor 5 (X5) = Water depth. The coding is -1 for half and +1 for
full.

6.  

Factor 6 (X6) = Horn depth. The coding is -1 for 5 mm and +1 for
10 mm.

7.  

Factor 7 (X7) = Flask clamping. The coding is -1 for unclamped
and +1 for clamped.

8.  

This data set has 16 observations. It is a 27-3 design with no center
points.

Goal of the
Experiment

This case study demonstrates the analysis of a 27-3 fractional factorial
experimental design. The goals of this case study are:

Determine the important factors that affect the sonoluminescent
light intensity. Specifically, we are trying to maximize this
intensity.

1.  

Determine the best settings of the seven factors so as to maximize
the sonoluminescent light intensity.

2.  

Data
Used in
the
Analysis

The following are the data used for this analysis. This data set is given in Yates order.

  Y           X1      X2      X3      X4      X5      X6      X7
Light             Solute             Gas   Water    Horn    Flask
Intensity Molarity  type     pH     Type   Depth   Depth  Clamping
------------------------------------------------------------------
 80.6       -1.0    -1.0    -1.0    -1.0    -1.0    -1.0    -1.0
 66.1        1.0    -1.0    -1.0    -1.0    -1.0     1.0     1.0
 59.1       -1.0     1.0    -1.0    -1.0     1.0    -1.0     1.0
 68.9        1.0     1.0    -1.0    -1.0     1.0     1.0    -1.0
 75.1       -1.0    -1.0     1.0    -1.0     1.0     1.0     1.0
373.8        1.0    -1.0     1.0    -1.0     1.0    -1.0    -1.0
 66.8       -1.0     1.0     1.0    -1.0    -1.0     1.0    -1.0
 79.6        1.0     1.0     1.0    -1.0    -1.0    -1.0     1.0
114.3       -1.0    -1.0    -1.0     1.0     1.0     1.0    -1.0
 84.1        1.0    -1.0    -1.0     1.0     1.0    -1.0     1.0
 68.4       -1.0     1.0    -1.0     1.0    -1.0     1.0     1.0
 88.1        1.0     1.0    -1.0     1.0    -1.0    -1.0    -1.0
 78.1       -1.0    -1.0     1.0     1.0    -1.0    -1.0     1.0

5.6.2.1. Background and Data
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327.2        1.0    -1.0     1.0     1.0    -1.0     1.0    -1.0
 77.6       -1.0     1.0     1.0     1.0     1.0    -1.0    -1.0
 61.9        1.0     1.0     1.0     1.0     1.0     1.0     1.0

Reading
Data into
Dataplot

These data can be read into Dataplot with the following commands

SKIP 25
READ INN.DAT Y X1 TO X7

5.6.2.1. Background and Data
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5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.2. Initial Plots/Main Effects

Plot the
Data:
Ordered
Data Plot

The first step in the analysis is to generate an ordered data plot.

Conclusions
from the
Ordered
Data Plot

We can make the following conclusions based on the ordered data plot.

Two points clearly stand out. The first 13 points lie in the 50 to 100 range, the next point is
greater than 100, and the last two points are greater than 300.

1.  

Important Factors: For these two highest points, factors X1, X2, X3, and X7 have the same
value (namely, +, -, +, -, respectively) while X4, X5, and X6 have differing values. We
conclude that X1, X2, X3, and X7 are potentially important factors, while X4, X5, and X6
are not.

2.  

Best Settings: Our first pass makes use of the settings at the observed maximum (Y =
373.8). The settings for this maximum are (+, -, +, -, +, -, -).

3.  

5.6.2.2. Initial Plots/Main Effects
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Plot the
Data: Dex
Scatter Plot

The next step in the analysis is to generate a dex scatter plot.

Conclusions
from the
DEX
Scatter Plot

We can make the following conclusions based on the dex scatter plot.

Important Factors: Again, two points dominate the plot. For X1, X2, X3, and X7, these two
points emanate from the same setting, (+, -, +, -), while for X4, X5, and X6 they emanate
from different settings. We conclude that X1, X2, X3, and X7 are potentially important,
while X4, X5, and X6 are probably not important.

1.  

Best Settings: Our first pass at best settings yields (X1 = +, X2 = -, X3 = +, X4 = either, X5
= either, X6 = either, X7 = -).

2.  

Check for
Main
Effects: Dex
Mean Plot

The dex mean plot is generated to more clearly show the main effects:

5.6.2.2. Initial Plots/Main Effects
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Conclusions
from the
DEX Mean
Plot

We can make the following conclusions from the dex mean plot.

Important Factors:
X2 (effect = large: about -80)
X7 (effect = large: about -80)
X1 (effect = large: about 70)
X3 (effect = large: about 65)
X6 (effect = small: about -10)
X5 (effect = small: between 5 and 10)
X4 (effect = small: less than 5)

1.  

Best Settings: Here we step through each factor, one by one, and choose the setting that
yields the highest average for the sonoluminescent light intensity:

(X1,X2,X3,X4,X5,X6,X7) = (+,-,+,+,+,-,-)

2.  

5.6.2.2. Initial Plots/Main Effects
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Comparison
of Plots

All of the above three plots are used primarily to determine the most important factors. Because it
plots a summary statistic rather than the raw data, the dex mean plot shows the ordering of the
main effects most clearly. However, it is still recommended to generate either the ordered data
plot or the dex scatter plot (or both). Since these plot the raw data, they can sometimes reveal
features of the data that might be masked by the dex mean plot.

In this case, the ordered data plot and the dex scatter plot clearly show two dominant points. This
feature would not be obvious if we had generated only the dex mean plot.

Interpretation-wise, the most important factor X2 (solute) will, on the average, change the light
intensity by about 80 units regardless of the settings of the other factors. The other factors are
interpreted similarly.

In terms of the best settings, note that the ordered data plot, based on the maximum response
value, yielded

+, -, +, -, +, -, -

Note that a consensus best value, with "." indicating a setting for which the three plots disagree,
would be

+, -, +, ., +, -, -

Note that the factor for which the settings disagree, X4, invariably defines itself as an
"unimportant" factor.

5.6.2.2. Initial Plots/Main Effects
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5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.3. Interaction Effects

Check for
Interaction
Effects: Dex
Interaction
Plot

In addition to the main effects, it is also important to check for interaction effects, especially
2-factor interaction effects. The dex interaction effects plot is an effective tool for this.

5.6.2.3. Interaction Effects
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Conclusions
from the
DEX
Interaction
Effects Plot

We make the following conclusions from the dex interaction effects plot.

Important Factors: Looking for the plots that have the steepest lines (that is, the largest
effects), and noting that the legends on each subplot give the estimated effect, we have that

The diagonal plots are the main effects. The important factors are: X2, X7, X1, and
X3. These four factors have |effect| > 60. The remaining three factors have |effect| <
10.

❍   

The off-diagonal plots are the 2-factor interaction effects. Of the 21 2-factor
interactions, 9 are nominally important, but they fall into three groups of three:

X1*X3, X4*X6, X2*X7 (effect = 70)■   

X2*X3, X4*X5, X1*X7 (effect approximately 63.5)■   

X1*X2, X5*X6, X3*X7 (effect = -59.6)■   

All remaining 2-factor interactions are small having an |effect| < 20. A virtue of the
interaction effects matrix plot is that the confounding structure of this Resolution IV
design can be read off the plot. In this case, the fact that X1*X3, X4*X6, and X2*X7
all have effect estimates identical to 70 is not a mathematical coincidence. It is a
reflection of the fact that for this design, the three 2-factor interactions are
confounded. This is also true for the other two sets of three (X2*X3, X4*X5, X1*X7,
and X1*X2, X5*X6, X3*X7).

❍   

1.  

Best Settings: Reading down the diagonal plots, we select, as before, the best settings "on
the average":

(X1,X2,X3,X4,X5,X6,X7) = (+,-,+,+,+,-,-)

For the more important factors (X1, X2, X3, X7), we note that the best settings (+, -, +, -)
are consistent with the best settings for the 2-factor interactions (cross-products):

X1: +, X2: - with X1*X2: -
X1: +, X3: + with X1*X3: +
X1: +, X7: - with X1*X7: -
X2: -, X3: + with X2*X3: -
X2: -, X7: - with X2*X7: +
X3: +, X7: - with X3*X7: -

2.  

5.6.2.3. Interaction Effects
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5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.4.Main and Interaction Effects: Block Plots

Block Plots Block plots are a useful adjunct to the dex mean plot and the dex interaction effects plot to
confirm the importance of factors, to establish the robustness of main effect conclusions, and to
determine the existence of interactions.

For block plots, it is the height of the bars that is important, not the relative positioning of each
bar. Hence we focus on the size and internal signs of the blocks, not "where" the blocks are
relative to each other.

We note in passing that for a fractional factorial design, we cannot display all combinations of the
six remaining factors. We have arbitrarily chosen two robustness factors, which yields four
blocks for comparison.

5.6.2.4. Main and Interaction Effects: Block Plots
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Conclusions
from the
Block Plots

We can make the following conclusions from the block plots.

Relative Importance of Factors: Because of the expanded vertical axis, due to the two
"outliers", the block plot is not particularly revealing. Block plots based on alternatively
scaled data (e.g., LOG(Y)) would be more informative.

1.  

5.6.2.4. Main and Interaction Effects: Block Plots
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5.6.2.5. Important Factors: Youden Plot

Purpose The dex Youden plot is used to distinguish between important and unimportant factors.

Sample
Youden Plot

5.6.2.5. Important Factors: Youden Plot
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Conclusions
from the
Youden plot

We can make the following conclusions from the Youden plot.

In the upper left corner are the interaction term X1*X3 and the main effects X1 and X3.1.  

In the lower right corner are the main effects X2 and X7 and the interaction terms X2*X3
and X1*X2.

2.  

The remaining terms are clustered in the center, which indicates that such effects have
averages that are similar (and hence the effects are near zero), and so such effects are
relatively unimportant.

3.  

On the far right of the plot, the confounding structure is given (e.g., 13: 13+27+46), which
suggests that the information on X1*X3 (on the plot) must be tempered with the fact that
X1*X3 is confounded with X2*X7 and X4*X6.

4.  

5.6.2.5. Important Factors: Youden Plot

http://www.itl.nist.gov/div898/handbook/pri/section6/pri625.htm (2 of 2) [7/1/2003 4:16:59 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/
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5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.6. Important Factors: |Effects| Plot

Purpose The |effects| plot displays the results of a Yates analysis in both a tabular and a graphical format.
It is used to distinguish between important and unimportant effects.

Sample
|Effects|
Plot

5.6.2.6. Important Factors: |Effects| Plot
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Conclusions
from the
|effects| plot

We can make the following conclusions from the |effects| plot.

A ranked list of main effects and interaction terms is:

X2
X7
X1*X3 (confounded with X2*X7 and X4*X6)
X1
X3
X2*X3 (confounded with X4*X5 and X1*X7)
X1*X2 (confounded with X3*X7 and X5*X6)
X3*X4 (confounded with X1*X6 and X2*X5)
X1*X4 (confounded with X3*X6 and X5*X7)
X6
X5
X1*X2*X4 (confounded with other 3-factor interactions)
X4
X2*X4 (confounded with X3*X5 and X6*X7)
X1*X5 (confounded with X2*X6 and X4*X7)

1.  

From the graph, there is a clear dividing line between the first seven effects (all |effect| >
50) and the last eight effects (all |effect| < 20). This suggests we retain the first seven terms
as "important" and discard the remaining as "unimportant".

2.  

Again, the confounding structure on the right reminds us that, for example, the nominal
effect size of 70.0125 for X1*X3 (molarity*pH) can come from an X1*X3 interaction, an
X2*X7 (solute*clamping) interaction, an X4*X6 (gas*horn depth) interaction, or any
mixture of the three interactions.

3.  

5.6.2.6. Important Factors: |Effects| Plot
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5.6.2.7. Important Factors: Half-Normal Probability Plot

Purpose The half-normal probability plot is used to distinguish between important and unimportant
effects.

Sample
Half-Normal
Probability
Plot

5.6.2.7. Important Factors: Half-Normal Probability Plot
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Conclusions
from the
Half-Normal
Probability
Plot

We can make the following conclusions from the half-normal probability plot.

The points in the plot divide into two clear clusters:

An upper cluster (|effect| > 60).❍   

A lower cluster (|effect| < 20).❍   

1.  

The upper cluster contains the effects:

X2, X7, X1*X3 (and confounding), X1, X3, X2*X3 (and confounding), X1*X2 (and
confounding)

These effects should definitely be considered important.

2.  

The remaining effects lie on a line and form a lower cluster. These effects are declared
relatively unimportant.

3.  

The effect id's and the confounding structure are given on the far right (e.g., 13:13+27+46).4.  

5.6.2.7. Important Factors: Half-Normal Probability Plot
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5.6.2.8.Cumulative Residual Standard Deviation Plot

Purpose The cumulative residual standard deviation plot is used to identify the best (parsimonious) model.

Sample
Cumulative
Residual
Standard
Deviation
Plot

5.6.2.8. Cumulative Residual Standard Deviation Plot
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Conclusions
from the
Cumulative
Residual
SD Plot

We can make the following conclusions from the cumulative residual standard deviation plot.

The baseline model consisting only of the average ( ) = 110.6063) has a high residual
standard deviation (95).

1.  

The cumulative residual standard deviation shows a significant and steady decrease as the
following terms are added to the average: X2, X7, X1*X3, X1, X3, X2*X3, and X1*X2.
Including these terms reduces the cumulative residual standard deviation from
approximately 95 to approximately 17.

2.  

Exclude from the model any term after X1*X2 as the decrease in the residual standard
deviation becomes relatively small.

3.  

From the |effects| plot, we see that the average is 110.6063, the estimated X2 effect is
-78.6126, and so on. We use this to from the following prediction equation:

Note that X1*X3 is confounded with X2*X7 and X4*X6, X1*X5 is confounded with X2*X6
and X4*X7, and X1*X2 is confounded with X3*X7 and X5*X6.

From the above graph, we see that the residual standard deviation for this model is
approximately 17.

4.  

5.6.2.8. Cumulative Residual Standard Deviation Plot
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5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.9.Next Step: Dex Contour Plot

Purpose The dex contour plot is used to determine the best factor settings for the two most important
factors in the next iteration of the experiment.

From the previous plots, we identified X2 (solute) and X7 (horn depth) as the two most important
factors.

Sample Dex
Contour
Plot

5.6.2.9. Next Step: Dex Contour Plot
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Conclusions
from the
Dex
Contour
Plot

We can make the following conclusions from the dex contour plot.

The best (high light intensity) setting for X2 is "-" and the best setting for X7 is "-". This
combination yields an average response of approximately 224. The next highest average
response from any other combination of these factors is only 76.

1.  

The non-linear nature of the contour lines implies that the X2*X7 interaction is important.2.  

On the left side of the plot from top to bottom, the contour lines start at 0, increment by 50
and stop at 400. On the bottom of the plot from right to left, the contour lines start at 0,
increment by 50 and stop at 400.

To achieve a light intensity of, say 400, this suggests an extrapolated best setting of (X2,
X7) = (-2,-2).

3.  

Such extrapolation only makes sense if X2 and X7 are continuous factors. Such is not the
case here. In this example, X2 is solute (-1 = sugar and +1 = glycerol) and X7 is flask
clamping (-1 is unclamped and +1 is clamped). Both factors are discrete, and so
extrapolated settings are not possible.

4.  

5.6.2.9. Next Step: Dex Contour Plot
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5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.10.Summary of Conclusions

Most
Important
Factors

The primary goal of this experiment was to identify the most important
factors in maximizing the sonoluminescent light intensity.

Based on the preceding graphical analysis, we make the following
conclusions.

Four factors and three groups of 2-factor interactions are
important. A rank-order listing of factors is:

X2: Solute (effect = -78.6)1.  

X7: Clamping (effect = -78.1)2.  

X1*X3 (Molarity*pH) or
X2*X7 (Solute*Clamping)
(effect = 70.0)

3.  

X1: Molarity (effect = 66.2)4.  

X3: pH (effect = 63.5)5.  

X2*X3 (Solute*pH) or
X4*X5 (Gas*Water Depth)
X1*X7 (Molarity*Clamping)
(effect = -63.5)

6.  

X1*X2 (Molarity*Solute) or
X3*X7 (Ph*Clamping)
(effect = -59.6)

7.  

●   

Thus, of the seven factors and 21 2-factor interactions, it was
found that four factors and at most seven 2-factor interactions
seem important, with the remaining three factors and 14
interactions apparently being unimportant.

●   

5.6.2.10. Summary of Conclusions
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Best Settings The best settings to maximize sonoluminescent light intensity are

X1 (Molarity) + (0.33 mol)●   

X2 (Solute) - (sugar)●   

X3 (pH) + (11)●   

X4 (Gas) . (either)●   

X5 (Water Depth) + (full)●   

X6 (Horn Depth) - (5 mm)●   

X7 (Clamping) - (unclamped)●   

with the X1, X2, X3, and X7 settings especially important.

5.6.2.10. Summary of Conclusions
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5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.11.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more
detailed information about each analysis step from the
case study description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 8 columns of numbers 
    into Dataplot: variables Y, X1, X2,
    X3, X4, X5, X6, and X7.

2. Plot the main effects.

   1. Ordered data plot.

   2. Dex scatter plot.

   3. Dex mean plot.

 1. Ordered data plot shows 2 points
    that stand out.  Potential
    important factors are X1, X2, X3,
    and X7.

 2. Dex scatter plot identifies X1, X2,
    X3, and X7 as important factors.

 3. Dex mean plot identifies X1, X2,
    X3, and X7 as important factors.

5.6.2.11. Work This Example Yourself
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3. Plots for interaction effects

   1. Generate a dex interaction
      effects plot.

 1. The dex interaction effects
    plot shows several important
    interaction effects.

4. Block plots for main and interaction effects

   1. Generate block plots.  1. The block plots are not
    particularly helpful in
    this case.

5. Youden plot to identify important factors

   1. Generate a Youden plot.  1. The Youden plot identifies
    X1, X2, X3, and X7 as important
    factors.  It also identifies a
    number of important interactions
    (X1*X3, X1*X2, X2*X3).

6. |Effects| plot to identify important factors

   1. Generate |effects| plot.  1. The |effects| plot identifies
    X2, X7, X1*X3, X1, X3, X2*X3,
    and X1*X2 as important factors
    and interactions.

7. Half-normal probability plot to
   identify important factors

   1. Generate half-normal probability
      plot.

 1. The half-normal probability plot
    identifies X2, X7, X1*X3, X1, X3,
    X2*X3, and X1*X2 as important
    factors and interactions.

5.6.2.11. Work This Example Yourself
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8. Cumulative residual standard
   deviation plot

   1. Generate a cumulative residual
      standard deviation plot.

 1. The cumulative residual standard
    deviation plot results in a model
    with 4 main effects and 3 2-factor
    interactions.

9. Dex contour plot

   1. Generate a dex contour plot using
      factors 2 and 7.

 1. The dex contour plot shows
    X2 = -1 and X7 = -1 to be the
    best settings.

5.6.2.11. Work This Example Yourself
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5. Process Improvement

5.7.A Glossary of DOE Terminology

Definitions
for key DOE
terms

This page gives definitions and information for many of the basic terms
used in DOE. 

●   Alias: When the estimate of an effect also includes the
influence of one or more other effects (usually high order
interactions) the effects are said to be aliased (see
confounding). For example, if the estimate of effect D in a
four factor experiment actually estimates (D + ABC), then
the main effect D is aliased with the 3-way interaction
ABC. Note: This causes no difficulty when the higher order
interaction is either non-existent or insignificant.

●   Analysis of Variance (ANOVA): A mathematical
process for separating the variability of a group of
observations into assignable causes and setting up various
significance tests.

●   Balanced Design: An experimental design where all
cells (i.e. treatment combinations) have the same number of
observations.

●   Blocking: A schedule for conducting treatment
combinations in an experimental study such that any effects
on the experimental results due to a known change in raw
materials, operators, machines, etc., become concentrated
in the levels of the blocking variable. Note: the reason for
blocking is to isolate a systematic effect and prevent it from
obscuring the main effects. Blocking is achieved by
restricting randomization.

●   Center Points: Points at the center value of all factor
ranges.
Coding Factor Levels: Transforming the scale of
measurement for a factor so that the high value becomes +1
and the low value becomes -1 (see scaling). After coding
all factors in a 2-level full factorial experiment, the design
matrix has all orthogonal columns. 

5.7. A Glossary of DOE Terminology
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Coding  is a simple linear transformation of the original
measurement scale. If the "high" value is Xh and the "low"
value is XL (in the original scale), then the scaling
transformation takes any original X value and converts it to
(X - a)/b, where
a = (Xh + XL)/2 and b = ( Xh -X L)/2.
To go back to the original measurement scale, just take the
coded value and multiply it by "b" and add "a" or, X =
b(coded value) + a.

As an example, if the factor is temperature and the high
setting is 65oC and the low setting is 55oC, then a = (65 +
55)/2 = 60 and b = (65 - 55)/2 = 5. The center point (where
the coded value is 0) has a temperature of 5(0) + 60 = 
60oC.     

●   Comparative Designs: A design aimed at making
conclusions about one a priori important factor, possibly in
the presence of one or more other "nuisance" factors.

●   Confounding:  A confounding design is one where some
treatment effects (main or interactions) are estimated by the
same linear combination of the experimental observations
as some blocking effects. In this case, the treatment effect
and the blocking effect are said to be confounded.
Confounding is also used as a general term to indicate that
the value of a main effect estimate comes from both the
main effect itself and also contamination or bias from
higher order interactions. Note: Confounding designs
naturally arise when full factorial designs have to be run in
blocks and the block size is smaller than the number of
different treatment combinations. They also occur
whenever a fractional factorial design is chosen instead of a
full factorial design. 

●   Crossed Factors: See factors below.

●   Design: A set of experimental runs which allows you to
fit a particular model and estimate your desired effects.

●   Design Matrix: A matrix description of an experiment
that is useful for constructing and analyzing experiments.

●   Effect: How changing the settings of a factor changes
the response. The effect of a single factor is also called
a main effect. Note: For a factor A with two levels, scaled
so that low = -1 and high = +1, the effect of A is estimated
by subtracting the average response when A is -1 from the
average response when A = +1 and dividing the result by 2

5.7. A Glossary of DOE Terminology
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(division by 2 is needed because the -1 level is 2 scaled
units away from the +1 level).

●   Error: Unexplained variation in a collection of
observations. Note: DOE's typically require understanding
of both random error and lack of fit error. 

●   Experimental Unit: The entity to which a specific
treatment combination is applied. Note: an experimental
unit can be a

PC board●   

silicon wafer●   

tray of components simultaneously treated●   

individual agricultural plants●   

plot of land●   

automotive transmissions●   

etc.●   

●   Factors: Process inputs an investigator manipulates to
cause a change in the output. Some factors cannot be
controlled by the experimenter but may effect the
responses. If their effect is significant, these uncontrolled
factors should be measured and used in the data analysis.
Note: The inputs can be discrete or continuous.

Crossed Factors: Two factors are crossed if every
level of one occurs with every level of the other in
the experiment. 

●   

Nested Factors: A factor "A" is nested within
another factor "B" if the levels or values of "A" are
different for every level or value of "B". Note:
Nested factors or effects have a hierarchical
relationship.

●   

●   Fixed Effect: An effect associated with an input variable
that has a limited number of levels or in which only a
limited number of levels are of interest to the experimenter.

●   Interactions: Occurs when the effect of one factor on a
response depends on the level of another factor(s). 

●   Lack of Fit Error: Error that occurs when the analysis
omits one or more important terms or factors from the
process model. Note: Including replication in a DOE
allows separation of experimental error into its
components: lack of fit and random (pure) error.

●   Model: Mathematical relationship which relates changes
in a given response to changes in one or more factors. 

5.7. A Glossary of DOE Terminology
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●   Nested Factors: See factors above.

●   Orthogonality: Two vectors of the same length are
orthogonal if the sum of the products of their corresponding
elements is 0. Note: An experimental design is orthogonal
if the effects of any factor balance out (sum to zero) across
the effects of the other factors.

●   Random Effect: An effect associated with input
variables chosen at random from a population having a
large or infinite number of possible values. 

●   Random error: Error that occurs due to natural variation
in the process. Note: Random error is typically assumed to
be normally distributed with zero mean and a constant
variance. Note: Random error is also called experimental
error.

●   Randomization: A schedule for allocating treatment
material and for conducting treatment combinations in a
DOE such that the conditions in one run neither depend on
the conditions of the previous run nor predict the conditions
in the subsequent runs. Note: The importance of
randomization cannot be over stressed. Randomization is
necessary for conclusions drawn from the experiment to be
correct, unambiguous and defensible. 

●   Replication: Performing the same treatment combination
more than once. Note: Including replication allows an
estimate of the random error independent of any lack of fit
error. 

●   Resolution: A term which describes the degree to which
estimated main effects are aliased (or confounded) with
estimated 2-level interactions, 3-level interactions, etc. In
general, the resolution of a design is one more than the
smallest order interaction that some main effect is
confounded (aliased) with. If some main effects are
confounded with some 2-level interactions, the resolution is
3. Note: Full factorial designs have no confounding and are
said to have resolution "infinity". For most practical
purposes, a resolution 5 design is excellent and a resolution
4 design may be adequate. Resolution 3 designs are useful
as economical screening designs. 

●   Responses: The output(s) of a process. Sometimes called
dependent variable(s).

●   Response Surface Designs: A DOE that fully explores
the process window and models the responses. Note: These
designs are most effective when there are less than 5
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factors. Quadratic models are used for response surface
designs and at least three levels of every factor are needed
in the design.

●   Rotatability: A design is rotatable if the variance of the
predicted response at any point x depends only on the
distance of x from the design center point. A design with
this property can be rotated around its center point without
changing the prediction variance at x. Note: Rotatability is
a desirable property for response surface designs (i.e.
quadratic model designs).

●   Scaling Factor Levels: Transforming factor levels so
that the high value becomes +1 and the low value becomes
-1. 

●   Screening Designs: A DOE that identifies which of
many factors have a significant effect on the response.
Note: Typically screening designs have more than 5
factors.

●   Treatment: A treatment is a specific combination of
factor levels whose effect is to be compared with other
treatments.

●   Treatment Combination: The combination of the
settings of several factors in a given experimental trial.
Also known as a run.

●   Variance Components: Partitioning of the overall
variation into assignable components.
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Software to
design and
analyze
experiments

In addition to the extensive design and analysis documentation and
routines in Dataplot, there are many other good commercial DOE
packages. This Chapter showed examples using "JMP" (by the SAS
Institute, 100 SAS CampusDrive, Cary, North Carolina 27513-9905),
as an illustration of a good commercial package.
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